
A white paper issued by: Siemens PLM Software

Agile software development processes have proven their value, and even traditional
development organizations are embracing their benefits. Siemens PLM Software
adopted the Scrum framework for development of its Polarion application lifecycle
management (ALM) solution. This paper describes the major factors that
influenced the adoption of Scrum, and examines how Polarion ALMTM supports
Scrum processes.

www.siemens.com/polarion

Using Polarion ALM
in Scrum

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

2

Contents

Why Scrum? ...3

Polarion ALM in the Scrum process5

Product backlog ...7

The sprint: meetings ..9

The sprint: development ..11

Conclusion ...13

Notes ...14

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

3

Why Scrum?

Agile processes have proven their value, and even traditional
development organizations are embracing their benefits, if
only in a hybrid way. Siemens PLM Software adopted the
Scrum framework for development of its Polarion application
lifecycle management (ALM) solution for several reasons,
some specific to size, area of business, customers and others
quite general. This paper will focus on the major factors that
influenced the adoption of Scrum. Perhaps the most impor-
tant reason was transparency. Before Scrum, customers would
request something, product management then defined
requirements, the development team committed to fulfilling
them, and yet the end results were not always as expected.
Delivery sometimes slipped, and if a release was rescheduled,
the risk was unclear and no one could tell whether the new
date was realistic. Also, the development team needed to be
able to respond quickly to changes in market conditions and
business strategy.

Scrum helps developers understand what they need to do to
build quality software and enables them to make decisions
faster. Switching from defined and predictive development
to an empirical iterative incremental model is exactly what
Scrum is about.

Scrum’s core values
Some of the important values of Scrum include:

• Empiricism – facilitates management, development and
deployment of complex products.

• Inspections and adaptations – allowing people to check
and reach goals.

• Full transparency – people know the exact state of the
product.

• Iterative development – generates visible increments of
functionality. Progress is measured not by time or money
spent, but by concrete results.

• Self-organization – people want to do their best, and will
consistently do so when there is room for them to work
in whatever way is most efficient for them, rather than
according to some dictum. Team motivation is raised,
enhancing productivity and motivation.

• Delivery – many great projects with very capable teams
have failed to deliver anything. Scrum helps teams mini-
mize this risk every step along the way. If a project is going
to fail, it’s better to know as soon as possible in order to
kill it earlier and cut the losses.

Software requirements specification

Architecture design

Implementation

Test

Release

Iteration
planning
meeting

Iteration
assessment

meeting

Lessons
learned

2 weeks

Figure 1

Polarion iteration (Sprint)

Time

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

4

Iterative incremental development
Unlike the old “waterfall” approach, Scrum recommends a
highly adaptive way of development with short iterations
producing fully tangible results. Major benefits realized from
Scrum development include:

• Shorter time to release to market

• Transparency to management and customers

• Faster reaction to market needs

• Higher customer confidence in development abilities

• Simpler synchronization of distributed teams

• Easier releases – smaller stabilization sprints, fewer things
to test

• Faster feedback from the field

• Flexibility in prioritization, risk reduction

Also, some activities can be done in parallel. Specification of
one feature for the next iteration may happen in parallel with
implementation of another feature already specified in a
previous iteration. For Polarion development, Siemens PLM
Software has very short iterations of two weeks, with an
iteration planning meeting at the beginning, and an iteration
assessment meeting at the end of each iteration. This has
proven optimal for several teams of 3 to 10 team members.

Features Usability Process Performance Integrations QA

Development
team

CustomersNew ideas

Customer Demand List

Sales/PSO

Product
management

Product Backlog:
Sprint Planning

Figure 2: Inputs for product backlog

Backlogs:

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

5

Polarion ALM in the Scrum process

The remainder of this paper assumes familiarity with the basic
functionality of Polarion ALM, including its terminology, and
at least some experience with the administration interface.

Work item types
Polarion ALM is configured with four work item types to
support the Scrum process:

• User story: defines what functionality should be added,
updated or removed. It is formulated in business language,
articulates business value and groups all relevant activities
together.

• Improvement: specifies positive change(s) that will appear
in a future release – code improvements, documentation
tasks, etc.

• Defect: errors, flaws, failures, faults

• Task: any activity consuming time and human resources.
Results don’t appear directly in products − write a test case,
install a demo server, brainstorm discussion about a feature,
etc.

Change requests or requirements are not included – those are
covered by user stories.

User story attributes
Attributes are reflected in custom fields defined for each
work item type. For user stories we track:

• Author of request (whom to ask for clarifications)

• Backlog (list of all requests, sorted by priority)

• Relationships between user stories (People may require
similar or related things. We need to see those relation-
ships to simplify prioritization and grouping in the product
backlog.)

• Product edition(s) that will include a feature

• Doc not required − flag if a user story does not require
documentation

• Who requested the functionality (customer, prospect,
other)

• Responsible developer – this may seem a contradiction
to a team-oriented approach but there is a reason for it.
We found it useful to have a single person responsible for
each user story who checks all the activities around it, and
who also leads the demos of the feature when the product
is ready.

• State – the most important states are: “open” (new, to do),
“in progress” (there is active work on it), “implemented”
(implementation activities are finished) and “done.”

• Initial estimate – this is typically empirical data, which the
team agrees on. The time spent and remaining estimates
are calculated automatically using Polarion ALM (via inher-
ited fields) from linked child work items (improvements,
defects, tasks).

• There are more attributes specific to our development
cycles, but these are the main ones.

Figure 3: Work item type configuration in Polarion ALM

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

6

Improvement attributes
As with any implementation-related work item, an improve-
ment has references to the build in which it was implemented
(so testers know which build to review), in which build it was
reviewed by QA, the branch it was committed to, the
assignee, time estimates, etc.

Improvement prioritization is typically done in the correspond-
ing user story. All improvements planned to a sprint should be
linked to a user story.

Defect attributes
Attributes are similar to those of improvements. Defects can
be taken in a sprint without linking to a user story, and they
may be prioritized separately. The most important attributes
include:

• Build (or product version) where the problem was
discovered.1

• Severity – the impact on customers or internal users.

• Customer – if reported by a customer, it needs higher
priority. Also, the customer may need a patch, so we
have to track who should be provided with one.2

• Build in which the problem was resolved, branches,
assignee, estimates and time spent, etc.

• Known issue − defect is not resolved and should be men-
tioned in “known issues” list for the release.

Task attributes
This type of work item doesn’t have direct connection to
customer or builds, therefore it doesn’t have any specific
attributes. This item also must be linked to a user story to be
selected for a sprint.

Linking of work items
Perhaps less important than work item types, Polarion’s linking
capabilities help us in creating work breakdown structure, and
we benefit from the planning features, which take into consid-
eration various types of links.

The most important link types are:

• Implements: the relationship of improvements, defects and
tasks to the user story. Until linked child items are resolved,
the user story is not considered done.

• Depends on: the linked item must be processed first.

• Relates to: flags some relationship between work items;
provides a hint for developers to review if there is anything
relevant or important in the linked item.

• Parent: links work items of the same type. Used for decom-
position of complex user stories.

• Follows: some work items may be resolved in terms of the
request, but it turns out they need further work – usability
improvement, or a defect resulting from a fix of another.

Figure 4: Example of work breakdown structure

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

7

Product backlog

Typically the product owner writes up items for the product
backlog in a Word or Excel® document and then simply
reshuffles them according to priority. This approach could
easily cause all kinds of problems except for the fact that
Polarion ALM enables efficient and coordinated management
of such artifacts.

Composing user stories
Across all owners and stakeholders, we use three ways of
composing user stories:

• Through the Polarion web user interface (“create work
item”)

• Through email sent to the Polarion Mailet extension
(a server extension that can receive email messages and
turn them into work items)

• Through LiveDocs, Polarion’s exclusive office document
synchronization feature

Regardless of the authoring method, created work items
appear in the tracker and it is relatively easy for all stakehold-
ers to find them using Polarion’s query builder (such a query
could be “type:userstory AND backlog:usability“). We often
embed queries into wiki pages so stakeholders don’t have to
formulate queries. The one shown in Figure 6 below collects
all backlogs and displays the top items.

Prioritizing user stories
Here our process differs from typical Scrum. We have several
relatively independent stakeholders, all committed to a com-
mon goal, but still in pursuit of their own targets. Therefore,
each backlog is prioritized separately by the backlog owner,
who defines the threshold of his or her items to flag those
which must appear in the product backlog and, ideally,
should be discussed by the team.

Figure 5: A stakeholder backlog

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

8

Extracting from stakeholder backlogs to product backlog
Our next step is to collect all the required items for the prod-
uct backlog. Using Polarion ALM, it is quite easy to create a
wiki page that collects all the “top” (highest priority) items
from various backlogs – we simply embed an instance of the
{workitems} macro, supplying the correct query to fetch items
from the backlogs maintained in the tracker.

Next, the product owner prioritizes the list. We have defined
a custom integer field “Product Backlog Priority” (PBP) which
the product owner uses to sort the items accordingly.3

A highly useful Polarion feature lets you click “more” in a
backlog table embedded in a wiki page, which opens the
work items table in the tracker (a prime example of Polarion’s
integrated approach to tools).

The PBP attribute also helps to track down whether there were
some changes in a particular backlog that are not yet reflected
in the common one. For example, a query that retrieves all
the “important” user stories that don’t have the PBP field set
(Figure 8).

Additional tips from our development process
We actively use Polarion’s auto-assignment feature when
creating new work items. This enables immediate assignment
to a senior developer, who will potentially lead the implemen-
tation. The developer receives an email notification and sees
the new item assigned to him. This encourages early review of
posted user stories, provides read-filtered input for the plan-
ning meetings, etc.

To simplify prioritization the “weight” or “initial estimate” of a
user story is important, and automatic assignment helps to
get initial review and communication going even before the
planning meeting.

Also, we have configured the user story work item type to
aggregate the values of remaining estimate fields from any
child items.

So by brainstorming and reaching agreement at the planning
meeting, we identify an initial estimate value for each user
story. Later, however, when it is decomposed into improve-
ments, tasks and defects, we can often spot variations − that
particular work actually may take less time, or some additional
task may be added that had not been anticipated, and was
discovered after implementation began. This data is extremely
helpful for re-planning of any user story that was not finished
to the next sprint.

Tips
• Use auto-assignment for new work items

• Configure the user story work item type to aggregate the
values of remaining estimate fields from any child items

Figure 8: Wiki page section with query for potentially
missing backlog entries

Figure 7: Tracker items comprising the product backlog
displayed in a wiki page

Figure 6: Backlogs wiki page with embedded queries
displaying top items different backlogs

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

9

The sprint: meetings

Meetings are possibly the most important assets of Scrum.
Meetings are when the team commits to the product owner
on the amount of work (features) they will address over each
sprint. They discuss the progress in daily Scrums and, finally,
access results at the last meeting. This section and the next
describe how we manage those meetings with the Polarion
development team.

The planning meeting
The goal of the planning meeting is to ensure that the team
fully understands the product backlog items, to commit the
team to implementing agreed-on items in the upcoming
sprint, and to ensure proper distribution of work among team
members. During the planning meeting, dependencies
between teams are also identified to allow as much parallel
work by the teams as possible, keeping the same focus for the
iteration.

The planning entity for the sprint is the user story. Each one
has a customer (the person who formulated the software
requirement) and an owner – typically a senior developer,
who then follows the user story through the full lifecycle.

Typically the meeting is split into two parts. The first part
involves the product owner and possibly other stakeholders,
to ensure common understanding of things to be done and to
commit the team to specific work items.

The second part is a purely internal meeting, where the team
decides who will implement what and splits the user stories
into concrete task and improvement work items, and validates
capacity of the team using the Polarion ALM’s LivePlan fea-
ture.4 Normally the user stories in the product backlog have
been inspected and time-estimated by developers in advance.
Team members come prepared with questions, and perhaps
concerns about conflict with some agreements or principles,
or inconsistencies.

Out of the planning meeting come the user stories selected
for the sprint, which becomes a time point assignment in
Polarion ALM. Results of the planning meeting are presented
in a special wiki page showing the agreed-upon sprint backlog
(Figure 9).

Figure 9: Sprint backlog in the integrated wiki

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

10

Slipping user stories
We pay special attention to user stories committed to a sprint,
but not completed. It is very natural to slip to the next sprint
because “it’s just taking a little longer.”

One expects that as soon as it is moved to next sprint, it will
be done on the first day. Experience shows that developers
often leave unfinished user stories to the end of the iteration
because they are easy to complete. But in reality, they get
behind with other tasks, and the slipped user story remains
unfinished and slips even further into the next sprint.

A critical question in our planning meetings is: “If this user
story was not addressed in the last sprint, how can we ensure
that our new commitment to this user story will actually be
realized?”

Daily scrums
Daily scrums may be the most complicated part of Scrum
because it requires changing perceptions. Too many of us
interpret meetings as a means of getting tasks and reporting
back, but Scrum in general, and daily scrums in particular, are
about helping the team to understand the current situation
and to adjust if necessary. Daily scrums let team members
synchronize, and all can check whether sprint goals are still
feasible, and if not, make decisions about what to change. No
reports are made, and the Scrum Master poses a simple ques-
tion: “Are we sure we’ll meet our sprint goals? Please show/
explain how we do that!” We use the wiki task board to track
progress of our sprint execution (Figure 10).5

Since our teams are small, we move daily Scrums to the lunch
hour. When the most important questions are answered the
team may go to lunch and discuss low-level level details, if
needed.

The assessment meeting
Every iteration ends with an assessment meeting, in which
every developer presents his/her work, either as a document
(if the task was to “specify,” etc.), or as a demo of the imple-
mentation in the product. Each user story should already have
been tested by QA.6

For the assessment meetings we check only those items
marked as “done.”7 As input for the assessment meeting we
use yet another, more compressed, variant of the task board
(Figure 11).

The final part of the assessment meeting is for introspection
and lessons learned. Ideally, it is a time to discuss how we
could optimize the process to implement more over a sprint,
but typically we find ourselves trying to identify things that
were less than perfect in our process, and/or the implementa-
tion of some feature in the sprint. We also try to identify
additional synchronization risks, problems of communication,
involve additional people to show them a dependency that
was not fulfilled, and discuss other subjects.

Figure 10: Task board in the wiki

Figure 11: Task board summary on the wiki

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

11

During a sprint, the development team continuously inte-
grates all changes, and updated versions of the product are
installed on the internal servers daily to prove stability and
allow earlier testing of new functionality by other people
(testers, document writers and others).

Every developer should know his/her personal plan, which
matches the team plan set during the planning meeting.
Developers track tasks via:

• Personal queries, like “assigned to me in current time point”

• Email notifications of newly assigned work items

• The Live Plan chart and corresponding wiki pages in the
Polarion system

Burn-down charts
We configure the Live Plan view to show only entities assigned
to a time point (usually the current sprint). It shows only
leaves of the work item work breakdown structure (that is,
it doesn’t render user stories on the plan if it has child
items – improvements, tasks or defects) (Figure 12).

The Live Plan also reflects all non-working days (configured in
the global working calendar), and personal days off (config-
ured in developers’ personal working calendars). We get very
clear information about whether the sprint goals are still
achievable in the sprint time frame. The plan is ordered by
priorities and severities in the way developers have agreed
upon in the planning meeting. Correspondingly, less impor-
tant items should be at the end of the plan. We also have wiki
pages that highlight the progress of the team and remaining
time (Figure 13).

Polarion’s road map view also gives a clear picture of the work
items in tabular form (Figure 14).

Testing and documentation
As implementation enters the “implemented” state, it should
be taken over to QA and documentation. There is automatic
testing through unit tests and so on, but every feature should
pass QA control to ensure consistency of the implementation,
acceptable levels of usability, that licensing and configuration
for different product lines is correctly implemented, and that
there is common user acceptance.

Typically QA and documentation starts in parallel with devel-
opment based on a specification document (normally a wiki
page). Final definition of the test cases and documentation
typically happen at the point when implementation is really

The sprint: development

considered done, and the first round of review (also by QA) is
passed.8 The user story is populated with corresponding QA
and documentation tasks (there may be several of each),
and the user story owner sets the flags that proper QA and
documentation are complete.

Figure 12: Burn-down chart in the Live Plan

Figure 13: Remaining time estimate in the wiki

Figure 14: Polarion ALM road map view

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

12

Conclusion

This paper provides insights into how Scrum and Polarion ALM
can work in conjunction. Possible next steps include:

• If you are new to Polarion ALM, our test drive server will
enable you to explore Polarion ALM as much as you like
without any time limits. For information and to create your
user account, visit https://polarion.plm.automation.siemens.
com/products/alm/demo.

• You can find a constantly growing collection of extensions
for Polarion at http://extensions.polarion.com, including
examples of the task board, workflow functions, integra-
tions with third-party solutions, project templates and more.

• You can ask questions and discuss with other customers
your approach to using Polarion at http://forums.polarion.
com.

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

13

Notes

1. This is a string field, because it should allow values like
“before version 3.2.1” or “after nightly build Apr 12th 2008.”

2. Other work item types also have the customer attribute,
but it reflects who has requested the feature or proposed
an improvement, so its role is less important than in the
defect type.

3. You might also configure a special “hat” product owner. We
often use our own table settings to expose the PBP column,
so we can easily reshuffle items.

4. LivePlan reveals over-/under-tasked people, potential
bottlenecks, etc. as soon as you enter tentative plan data.

5. The wiki task board is a free extension available on the
Polarion extensions portal at http://extensions.polarion.
com.

6. Documentation may not happen in parallel with each itera-
tion. The reality is that documenting all things together is
not always possible. We use a special user story (UNDONE:
release X.Y.Z) to link all the things to be addressed in a
stabilization sprint before a corresponding release.

7. From a workflow point of view, user stories are marked as
“implemented” (programming is finished), “done” (QAed,
documented), “verified-done” (when corresponding
stakeholder agrees that this functionality is really what was
requested and expected). Those lacking documentation
are still marked as “done,” anticipating completion of docu-
mentation in a stabilization sprint.

8. Otherwise unforeseen issues might cause implementation
to vary from the original specification and lead to refine-
ment or even change of the specification. Of course the
product owner or corresponding stakeholders are the ones
who ultimately decide any change of specification.

A white paper issued by: Siemens PLM Software

White paper | Using Polarion ALM in Scrum

14

Siemens PLM Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Suites 4301-4302, 43/F
AIA Kowloon Tower,
Landmark East
100 How Ming Street
Kwun Tong, Kowloon
Hong Kong
+852 2230 3308

www.siemens.com/plm
© 2017 Siemens Product Lifecycle Management Software Inc. Siemens, the Siemens logo
and SIMATIC IT are registered trademarks of Siemens AG. Camstar, D-Cubed, Femap,
Fibersim, Geolus, I-deas, JT, NX, Omneo, Parasolid, Solid Edge, Syncrofit, Teamcenter
and Tecnomatix are trademarks or registered trademarks of Siemens Product Lifecycle
Management Software Inc. or its subsidiaries in the United States and in other countries.
Word and Excel are trademarks or registered trademark of Microsoft Corporation. All other
trademarks, registered trademarks or service marks belong to their respective holders.
55674-A9 4/17 F

About Siemens PLM Software
Siemens PLM Software, a business unit of the Siemens
Digital Factory Division, is a leading global provider of
product lifecycle management (PLM) and manufacturing
operations management (MOM) software, systems and
services with over 15 million licensed seats and more than
140,000 customers worldwide. Headquartered in Plano,
Texas, Siemens PLM Software works collaboratively with its
customers to provide industry software solutions that help
companies everywhere achieve a sustainable competitive
advantage by making real the innovations that matter. For
more information on Siemens PLM Software products and
services, visit www.siemens.com/plm.

