
A white paper issued by: Siemens PLM Software

Agile, software
requirements manage-
ment and regulatory
compliance: a practical
Live approach

Agile methods have proven their ability to improve project success rates, but there
is still some pretty wild, yet-to-be explored territory. For example: how can you
support information traceability from software requirements elicitation onward
while managing risk of noncompliance to industry standards and regulatory man-
dates using Agile? This paper presents the Live approach and discusses how the
adoption and refinement of Agile methods are able to significantly reduce risk of
project failure and increase efficiencies of regulatory compliance.

 www.siemens.com/polarion

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

2

Contents

Executive summary ..3

Introduction ...4

Value propositions of Agile principles5

Most common Agile methods ..6

Staying Agile: is it possible? ...7

The agile conundrum: requirements and governance versus
development ...7

Software development tools: state of the art8

The “bad old days”: disparate tools and data8

Today’s state-of-the-art tools proposition8

The new breed of ALM ...9

Integrating Agile with ALM ..10

The Live approach ..11

Live approach guidelines ..11

Guideline 1: Single ancestor ...11

Guideline 2: Single source ..11

Guideline 3: Single repository ..11

Guideline 4: Custom work item class specializations11

Guideline 5: Live features ..12

Guideline 6: Exposure ..12

Live levels ...13

Live information ..13

Information availability ...14

The Live approach and Agile development15

Conclusion ...16

References ...17

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

3

Executive summary

Agile principles evolved to address the perceived limitations of
Waterfall development – mainly that Waterfall does not show
results until the end, engages stakeholders too late, and
unnecessarily delays testing. Agile as a software development
approach has gone mainstream, because Agile is focused on
keeping the customer happy and gaining a clear understand-
ing of customers’ requirements.

The traditional Waterfall model strengths can generally be
characterized as plan-driven models of well-defined processes
of planning; firm requirements, requirements traceability and
testability, and clearly defined acceptance criteria are para-
mount. The strength of these methodologies lies in the com-
parability and repeatability that stem from standardized
processes. Waterfall development is generally considered to
be the least risky development model, which makes it popular
for large or long software development projects, particularly
in industries with project or product exposure to risk of life,
limb, or liberty monitored as such by government bodies.

But the reality is that no organization is a purist following any
single prescriptive methodology. Rather, we are “blenders,”
mixing what we need from Waterfall, Agile (Scrum, eXtreme
Programming), Rational Unified Process (RUP), Spiral, or other
methodologies into what we need for our projects and organi-
zations to succeed.

To accommodate these blended hybrids, organizations are
replacing legacy secular tools that create islands of inefficien-
cies and exclusion zones with application lifecycle manage-
ment (ALM) tools that are unified by design, web-based, and
easily customizable to support multiple, continuously evolving
processes.

This paper describes how some of the most widely adopted
best practices, especially the adoption and refinement of Agile
methods, have significantly reduced software development
risk, in terms of regulatory compliance and increased project
success rates. These guidelines are referred to as “Live
approach” because they are based on hybrid Agile-Waterfall
principles using just-in-time data provided by modern ALM
solutions.

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

4

Introduction

It has been proven that to outperform with Agile methods,
R&D people must live together in a stimulating environment
with few or no distractions relating to progress reporting,
discussions with management, document fulfillment and so
on.

As an example, consider the approach to gathering eXtreme
Programming (XP) requirements (“user stories”). The customer
(or user) should be an integral part of the development team,
answering developers’ questions in real time, rather than an
external entity. However, this is rarely achievable in practice
because very often the customer is an organization with
thousands of employees spread over several dispersed coun-
tries, and having complex definition and approval processes
for requirements.

Furthermore, Agile teams meet very often to decide what they
will achieve in the next few days or even hours. But such best
practices can frustrate managers and executives in a very
short time. These people need long-term planning and strate-
gic corporate governance of project costs. They need mile-
stones and deliverables, not a day-by-day assessment of “what
will we achieve today?”

The Live approach to project information handling can help
companies reconcile these disparate but equally vital needs.
Three major areas of interest around Agile software develop-
ment can benefit from the introduction of tools supporting
the Live approach: corporate governance, requirements man-
agement and project management. Any such new-generation
tools and methods must make software requirements engi-
neering, project planning and corporate governance directly
involved in software R&D, while keeping the R&D teams Agile
and not adding extra work or distractions.

The Live approach is not a methodology like XP, Scrum or RUP.
Rather, it is a set of guidelines whose aim is to define a pos-
sible roadmap for software development environments and
tools to make them open to support different development
methods with a higher degree of usability, and able to provide
“live” information about project status.

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

5

Value propositions of Agile principles

Agile methods have proven their ability to increase project
success ratios. The fairly wide adoption of several of them,
especially XP, dynamic systems development method (DSDM)
and Scrum, proves that most of the principles behind the Agile
Manifesto1 are valued by customers and by developers.

For instance, customers love these statements in the
Manifesto:

• “Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.”

• “Welcome changing requirements, even late in develop-
ment. Agile processes harness change for the customer’s
competitive advantage.”

• “Deliver working software frequently, from a couple of
weeks to a couple of months, with a preference to the
shorter timescale.”

On the other hand, developers very much like the following:

• “Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get
the job done.”

• “Agile processes promote sustainable development.”

• “Simplicity – the art of maximizing the amount of work not
done – is essential.”

• “The best architectures, requirements, and designs emerge
from self-organizing teams.”

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

6

Let’s look briefly at some of the most commonly used Agile
methods. The most relevant characteristic practices for the
discussion that follows are cited in the points below. A
broader dissertation can be found in Agile Software
Development Ecosystems2.

Dynamic systems development method (DSDM)
DSDM is an outgrowth of, and extension to, rapid application
development (RAD) practices. DSDM boasts the best-sup-
ported training and documentation of any Agile method.
DSDM’s nine principles include active user involvement, fre-
quent delivery, team decision making, integrated testing
throughout the project lifecycle and reversible changes in
development.

Extreme programming (XP)
XP preaches the values of community, simplicity, feedback
and courage. Important aspects of XP are its contribution to
altering the view of the cost of change and its emphasis on
technical excellence through refactoring and test-first devel-
opment. XP provides a system of dynamic practices, whose
integrity as a holistic unit has been proven. Among others
there are practices like the daily stand-up meeting and direct
involvement of the customer.

Scrum
Scrum provides a project management framework that
focuses development into 30-day sprint cycles in which a
specified set of backlog features are delivered. The core prac-
tice in Scrum is the use of daily 15-minute team meetings for
coordination and integration. Scrum has been in use for
nearly ten years and has been used to successfully deliver a
wide range of products.

It is clear that the most widely adopted Agile methods com-
pletely support key Agile values:

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”

Most common Agile methods

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

7

The aforementioned Agile values, however, are not applicable
in every environment. Consider an international corporation
with its software R&D spread over three continents, with R&D
serving other departments of the organization located all
around the world.

Is it possible to locate the “customer” together with the R&D
team? What about processes, multilingual manuals, corporate
and R&D budgeting, and delivery – plus resource planning?

In big companies, the software development activity (among
others) is increasingly being outsourced to offshore premises
and providers, creating a growing need in requirements
specification and project progress control. In all these situa-
tions, code is not the only artifact to be produced.

These facts (and many more) are the foundations of the
Capability Maturity Model Integration (CMMI) evolution3. The
aim of CMM was to certify the development ability of a soft-
ware R&D team, while CMMI certifies much wider business
processes inside an organization, including software develop-
ment. Another very interesting reason for moving CMM into
CMMI is the need for integrating corporate processes and
compliance with software development.

In light of this, CMMI and Agile methods seem to be incom-
patible, due to the much broader coverage of the former
compared to the latter.

The Agile conundrum: requirements and governance
versus development
Over the years, Siemens PLM Software has completed many
large-scale implementations where we are contracted to
integrate teams of Agile development with the organization’s
desire for increasing levels of CMMI compliance. “Extreme
Programming from a CMM Perspective”4 also tackled the issue
of integrating XP and Scrum with CMM and found that there
are some areas in CMM that fall outside the coverage of the
considered Agile methods. Such uncovered areas affect pro-
cess and project control and the monitoring and control of
suppliers.

Another interesting perspective is related to customer involve-
ment. For complex systems this often cannot be solved by
having the customer sit with the R&D team because formal
requirements gathering and refinement is performed by
dozens or even hundreds of people, geographically dispersed
as often as not. Agile Requirements, Methods and Tools 13.35
states that requirements definition activities nearly always
produce documents that are directed from writer to reader,
such as from the customer to R&D, and frozen – that is, not
supporting change – and this is in direct conflict with iterative
and change-driven Agile methods. Furthermore, since Agile
methodologies require team collocation and high domain
knowledge, if the contractors or outsourced partners are
working off-site, it cannot be Agile.

Another interesting fact: “In spite of what many people think,
it is not true that Agile methods are without artifacts,
although they are certainly less documentation-focused than
traditional techniques. Still, this is an issue for organizations
for whom the CMMI is the basis for rating their organization.”6

So software requirements management, as well as risk man-
agement, regulatory compliance, corporate governance, and
project management disciplines in large or distributed organi-
zations can actually suffer from the introduction of Agile
methods in R&D. Is a reasonable compromise even possible?

The answer can be found in one of the principles of the Agile
Manifesto itself:

“Give them the environment and support they need, and trust
them to get the job done.”

This could be interpreted as “give developers a toolset that is
fully integrated in the wider processes of the company and let
them collaborate remotely as if they were on the same site as
their customer, and let their work be seamlessly audited and
controlled.”

In practice this means that while developers are coding in an
Agile world using Agile tools, other people in the company
must be able to define and refine requirements, submit
changes, manage test cases and track project status using
their favorite methods and tools.

Is that realistic? Are tool vendors providing anything that
addresses this need?

Staying Agile: is it possible?

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

8

Software development and its supporting environments and
tools are entering an historic time. The actual proposition of
tools follows a pretty old concept that is strongly rooted in the
Waterfall model of software development, with some
exceptions.

The “bad old days”: disparate tools and data
The reason for disparate tools and data must be researched in
past achievements in providing support to each phase of the
software development process: at some point in time, for
example, it was clear that in order to support collaborative
programming, the development community needed version
management solutions. Some time later, it became evident
that software architects and their customers needed new tools
for requirements specification and approval in order to man-
age complex customer-provider relationships. The list goes on
and on, covering test management, change request and
propagation handling, customer support and other functions.

The problem that quickly arose is that every new toolset that
vendors have put on the market defined a new island of
automation. Each of these islands, in fact, defined a new data
model, a new access policy, a new repository, and so on. Of
course it soon became abundantly clear that the information
stored in diverse logical data models and repositories had to
be integrated. So vendors started building bridges to connect
the islands.

In many cases, some features that were introduced to support
one process were moved into another to extend the support
of some information set. After these improvements, vendors
started providing the market with solutions to support ver-
sioned requirements, change requests connected to source
code, and so on.

Today’s state-of-the-art tools proposition
Application lifecycle management is the state-of-the-art
proposition in the software development tools market.
From the perspective of the aforementioned history of soft-
ware development tools, ALM represents the latest achievable
step on the stairway to integrate islands of automation.
Regardless of what analysts may preach, legacy vendors will
never achieve ALM with dinosaur code because they cannot
economically or ethically ditch laggards paying annual mainte-
nance fees. Legacy vendors respond to the ALM movement by
trying to provide their customers with expensive, unreliable
one-off integrations between tools proposed by different
vendors. This level of effort is nothing more than simple data
exchange between tools, anti-Agile, and certainly not the
recommended Live approach.

Software development tools:
state of the art

Project plan isle

Code isle

Test plans isle

Requirements isle

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

9

The new breed of ALM
A close look at the new breed of ALM propositions reveals the
following common characteristics: ALM solutions aim to be
broad, with wide coverage of feature sets and support for
multiple project roles and deep, extensive support for the
feature set needed by each project role.

ALM solutions nearly always come with interesting guidelines
or even full methodologies to support software development.
Methodologies and tools are, of course, integrated.
Integration (as well as breadth and depth) is what customers
expect in ALM solutions.

In addition to integrations, customers expect corporate gover-
nance, risk management, compliance management, full
project progress tracking and project-related cost control over
dispersed teams. Why not? A true ALM system is unified, with
consolidated linked data and work items that can be easily
search queried and presented in the organization’s standard
reports without having to rely on developers, IT or
contractors.

In conclusion, ALM solutions offer broad support to people
covering different roles in software development, deep fea-
ture sets for each of them, and integrated functionalities to
bridge the information islands created by the different tools
comprising the suites.

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

10

Gartner information technology research and advisory com-
pany agrees that Agile should integrate ALM for best results.
In their “Key Issues for ALM,” they explain: “Projects deploying
Agile methods, geographically distributed projects – in which
applications are built and maintained by teams working world-
wide, and complex process and product development situa-
tions – all benefit from more effective ALM.” A hybrid process
allows you the flexibility you need with the benefit of greater
control.

Even if such ALM solutions have been widely adopted by many
companies, they are not much appreciated by Agile teams for
several reasons:

• Integrated tools that support their “integrated” methodolo-
gies are perceived as not Agile culture friendly.

• During Agile development, all the activities run in parallel.
Legacy ALM tools integrations include batch transport
of information from one repository to another (bridges
between islands), preventing instant notification of
changes.

• ALM solutions support different roles with different tools
having different processes. Agile processes force teams to
live together in the same room, use the same tool and the
same method.

• One of the most appreciated payoffs of Agile methods is
interchangeability of people. ALM leans more toward proj-
ect role specialization.

The Live approach can solve the problem of integrating Agile
development teams into a wider company/corporate infra-
structure by providing developers with live and available
access to the wider corporate information via the tools they
prefer (and need) to use.

So, to sum up what has been discussed thus far:

1. Using Agile methods in software development gives good
results.

2. Insulating Agile teams is pretty difficult in many situa-
tions: they are very often part of wider and not-at-all agile
corporate processes.

3. Available software development tools are inadequate for
Agile teams, which must be involved in wider corporate
processes such as risk or compliance management.

Integrating Agile with ALM

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

11

The Live approach from Siemens PLM Software consists in a
set of guidelines and taxonomy. Guidelines introduce a new
philosophy in managing software development artifacts and
development-related information. From these guidelines
come a set of criteria defining taxonomy to check the level of
adoption of the Live approach in development environments
and tools.

Live approach guidelines
The Live approach guidelines (referred to hereafter as Live
guidelines) can be divided into two main areas:

1. Relating to the Live information, the information model
and storage (guidelines 1 to 4)

2. Relating to information availability, the way in which the
Live information is accessed and exposed (guidelines 5
and 6)

Guideline 1: Single ancestor
The work item class is the common ancestor in an inheritance
hierarchy of all the information and artifacts related to the
development activities. Its instances are named work items.

More informally, this guideline says that all the artifacts to be
created and activities to be performed in the software lifecycle
(such as, for example, requirements, change requests, tasks,
test plans) are work items. This means that everything man-
aged during software development, from requirements to
code, is an instance of work item class.

Guideline 2: Single source
The instances of the work item class and the instances of all
its specializations are “single source” – all project information
exists only once in the development environment. As an
example, consider a test plan that is created during require-
ments specification. It must be the same test plan connected
to the requirements that generated it, and to the defects
found during its execution (never a copy of it).

Guideline 3: Single repository
The repository where work items are stored should be logi-
cally unique. This does not necessary mean that the repository
is physically one, but the repository must appear unique from
the user perspective.

While it is theoretically possible to build a logical single reposi-
tory on top of an integration of multiple repositories, this
practice is not recommended because it will probably lead to a
situation like the bridge-building between islands of automa-
tion. There are some exceptions to be considered; for exam-
ple, to support scalability needs where multiple repositories
provide better performance with mirroring, load balancing,
remote replication, and so on.

Guideline 4: Custom work item class specializations
Users can define their own specializations of the work item
class to match their corporate or project needs. Examples can
be more or less the usual “requirement,” “change request,”
“task,” “source file,” “code change log,” but also “customer
purchase order” or whatever makes sense for the organization
or just for a single project. This possibility includes the cus-
tomizability of the information to be stored in the work item
class specializations and the work item class itself.

The Live approach

Requirement Covers

Relates to

Depends on

Implements

Relates to

Duplicates
Parent

Parent

Test case

Requirement Defect

Requirement Defect

Task

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

12

Guideline 5: Live features
A feature is Live when it is an operation applicable to any
instance of the work item class and of its specializations. In
other words, a feature is Live when it can be applied to any
work item.

As a useful example, consider the “show progress” operation
that typically applies to a task to get the actual progress of it.
Promoting such functionality to become “Live show progress”
makes this feature applicable to any work item; so it is pos-
sible to get the actual progress on a test plan, on a require-
ment specification, on a change request, and so on.

It should already be clear that the larger the number and the
greater the power of the Live features in a certain lifecycle
management solution, the higher the benefits for its users.

Creating new Live features should represent a stimulating
activity for the provider of vertical tools: until now they’ve
been refining features for a certain phase in the software
lifecycle and/or for a certain role in the development chain;
now they should imagine how these features could be
extended to offer their value to every role in every phase of
software development.

Consider, as another example, the benefit of having Live
impact analysis. This means having the actual requirements-
oriented link navigation needed to find the requirements
impacted by a change, promoted in a way to wider navigation
in order to find every development artifact and activity
impacted by the change. So performing a Live impact analysis
operation will enable the user to easily find all the activities
that were performed to implement a requirement, their cost,
the people involved, all the artifacts to be changed (such as
source code and user manuals), plus eventually the impact of
the implementation of the change on the project plan deliver-
ables at certain milestones.

Guideline 6: Exposure
When using Live features to access work items, the resulting
information should be exposed in a way that is appropriate for
every single user role. This means that Live features should be
available to different user roles in the preferred format and
with the specific content desired by the users covering a role.
For example, project managers will want access to project
progress information in a plan format, while executive manag-
ers will want to see only critical paths in reaching milestones
summarized in a dashboard, while developers will see the
tasks assigned to them and their deadlines directly in their
integrated development environment (IDE).

It is clear that each development environment can be compli-
ant to these guidelines at a different level at a certain point in
time.

Same data – different views.

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

13

Live levels
This section introduces the Live approach compliancy taxon-
omy. The taxonomy contains a set of criteria against which to
check any development environment (that is, any kind of
development infrastructure and access toolset) to state its
level of compliancy with the Live approach: such compliancy
levels are hereafter referred as Live levels.

The taxonomy contains five Live levels. The last level provides
full compliancy to all the guidelines, plus a rich set of Live
features correctly exposed to each different user role.
Although the last level should stand as the final state to be
reached by every toolset at the end of the development tools
revolution, intermediate levels 1 to 4 are defined as a map for
getting there. These intermediate levels should help compa-
nies to assess the actual degree of support for the Live
approach by their development infrastructure, and suggest
further steps for improvement to move to the next level.

The five Live levels are:

• Level 1 - Foundation

• Level 2 - Connection

• Level 3 - Fusion

• Level 4 - Control

• Level 5 - Govern

Each level contains criteria to evaluate the compliancy of the
software development environment against Live guidelines.
Each level extends the criteria of the previous level. In what
follows, the criteria are discussed separating the Live guide-
lines according to their area: Live information and information
availability.

Live information
This section introduces the criteria to evaluate the level of
compliancy of the software development environment against
Live guidelines 1 to 4. So, these criteria are related to the way
in which the information is organized: data model and
storage.

1. Foundation level. At this level, guideline 1 (single ances-
tor) and guideline 2 (single source) must be supported.
So the work item class is defined as common ancestor
and all its instances and its successors’ instances are
single source.

2. Connection level. Work items are connected through
links. Links must support different connection types
according to link roles. So work items can be connected
with “containment” links or “impact” links, for example.

3. Fusion level. At this level, guideline 3 (single repository)
is supported: work items are stored in a single logical
repository. Additionally, the repository must support
version and history management on work items and links,
plus work item workflow management with statuses,
transitions, assignees and user notification mechanisms
over at least status changes. Finally, the repository must
guarantee a secure access.

4. Control level. Work items store information related to
time, priority and cost, support discussion and approvals.
Note that the content of time, cost and priority informa-
tion is broad: these may include estimated time to com-
pletion, planned start, planned end, assigned project
milestone, expected cost, actual cost, value, added value,
priority, severity, etc.

5. Govern level. At the last level, guideline 4 (custom work
item class specializations) is supported. Link types are
user-defined as well. So work item types, content and
connections can be customized based on user, project
and corporate needs. Risk, resource and financial man-
agement related information are added as well.

Govern Live dashboard

Control Live plan

Fusion Live track

Connection Live trace

Foundation Live search

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

14

This section introduces the criteria to evaluate the level of
compliancy of a software development environment against
guidelines 5 and 6. These criteria are related to the way in
which the information is managed: features and their
exposure.

The Live features to be added at each level are:

1. Foundation level. Live search: work items are searchable
by means of every attribute.

2. Connection level. Live trace: work items support link
role-based navigation, and impact and traceability
analysis.

3. Fusion level. Live track: extended lifecycle management
for the work items.

4. Control level. Live plan: project planning and progress
where all the work items, or work items belonging to
selected specializations of the work item class, appear in
a self-updating plan. This means that the plan is automat-
ically created from the information stored in work items
(such as priorities, severities and dependencies) and
recreated as a result of any change to planned work
items.

5. Govern level. Live dashboard: to govern every project
activity in real time. The dashboard is also able to show
multi-project information such as resource workload and
cross-project code re-use, for example.

At every level, the Live features must provide information to
the user in the appropriate format for the user’s role. In the
“island of automation” approach, there is only role-specific
information available in the appropriate format for users
covering a role. In the Live approach, all the information is
available to all users in their desired format.

As an example, consider project leaders, who deal with project
plans and Gantt charts. To get a view over the status of their
projects, they must stroll around looking at requirements
contained in Office documents, issues contained in trackers,
code stored in versioning systems, and so on. With the Live
approach, the actual status of every work item (that is, the
status of their project), is directly available for them in a plan
format.

The information provided by Live features at every level must
be available to every user. Thus, if the results of a Live search
included in Live level 1 can be provided to every user by
means of a unique web interface, at Live level 4, different
users will deal with the Live plan in a different way: develop-
ers reporting their progress in their IDEs, project leaders
arranging the priorities on a Gantt, managers looking at
money consumption in a spreadsheet where they can re-
assign budgets.

Information availability

Table summarizes the criteria for Live levels compliance.

Level Live information Information availability

Level 1 – Foundation The work item class is defined as common
ancestor and all its instances and its
successors’ instances are single source

Live search

Level 2 - Connection Work items are connected through typed links Live trace

Level 3 - Fusion Work items are contained in the same
versioned environment supporting change
and workflow management

Live track

Level 4 - Control Work items store time and cost related
information

Live plan

Level 5 - Govern Work item types, content and connections can
be customized

Live dashboard

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

15

The Live approach can be applied easily to bridge the gap
between Agile (in the R&D team) and formal (outside R&D)
processes using tools that provide Live and available project
information starting from Live level 4, as specified in the
previous section.

At Live level 4, for example, requirements, tasks, project
milestones and project cost information as well as change
requests, test plans, features, source code, builds, etc. all exist
“single-source” in a versioned, fully traceable, and workflow-
driven repository. Additionally, all relevant information for
each corporate or project role is available in the role’s pre-
ferred format.

Example: Complex requirements inception
As an example, given appropriate Live approach tools, a
complex requirements inception phase with refinement and
several approval levels can be performed inside the client
corporation in Atlanta by means of Office documents in the
same environment where the project manager in Munich
specifies tasks, priorities and milestones in Gantt format, and
where the development team in Delhi tracks their artifacts
and progress in an Agile way.

When moving to Live level 5, such dispersed teams will be
seamlessly providing the executive management in San
Francisco with crisp information that reveals delays, bottle-
necks, costs and risks.

The Live approach and Agile
development

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

16

Agile methods, representing a kind of rejection of all the
infrastructures of methods and tools built in the last decades
to produce software, have defined a new, successful, and
“free” way of creating working code. Unfortunately, Agile
methods are not always practical to apply due to risk manage-
ment, compliance management or process-oriented environ-
ments of larger and more dispersed companies.

Staying agile in software R&D departments and still matching
corporate needs is possible thanks to a new category of soft-
ware development tools that has in fact already emerged in
the market and is rapidly making significant inroads in compa-
nies that have experienced the dilemma identified in this
discussion: the need to apply proven Agile software develop-
ment methods within a wider, less Agile (or non-Agile) corpo-
rate context. An example of such a tool is Polarion® ALM from
Siemens PLM Software, which actually stands at level 5 in the
Live levels taxonomy.

The ability to mix the benefits of Agile software development
and more formal requirements management, planning and
governance methods of the Live approach opens new direc-
tions for future research in creating vertical Live methodolo-
gies and tools to support the needs of different business
sectors.

Conclusion

Issue and risk
management

Audits and
metrics,
reports

Reuse and
branch

management

Requirements
management

Build and
release

management

Agile/hybrid
project

management

Test and
quality

management

Change and
configuration
management

Planning and
resource

management

Collaboration
Traceability
Workflow

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

17

1. Manifesto for Agile Software Development, http://agilemanifesto.org
2. J. Highsmith, Agile Software Development Ecosystems, Pearson

Education, 2002
3. CMMI, http://www.sei.cmu.edu/cmmi/
4. M. Paulk, “Extreme Programming from a CMM Perspective,” IEEE

Software 18.6, 2001
5. R. Davies, Agile Requirements, Methods and Tools 13.3, 2005
6. D. Kane, S. Ornburn, “Agile Development: Weed or Wildflower?”

InformIT, 31 Aug. 2002

References

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

18

Polarion® ALM™
The unified application lifecycle management solution.

Connect teams and projects, and improve application develop-
ment processes with a single, unified solution for require-
ments, coding, testing, and release.

Polarion® Requirements™
Complete software requirements management solution.

Effectively gather, author, approve and manage software
requirements for complex systems across the full project
lifecycles.

Polarion® QA™
Complete test and quality management solution.

Design, coordinate, and track all your test management
activities in a single, collaborative QA environment.

Polarion® ALM Polarion® QA Polarion® Requirements

Core functionality

Adults, metrics and reports

Change and configuration management

Software requirements management

Test and quality management

Issue and risk management

Re-use and branch
management
Planning and resource
management
Agile/hybrid project
management
Build and release
management

Variants management

PLM-ALM integration

Polarion® Review
er™

 – Review
/Approve

Polarion® Pro™
 – Tasks O

nly

Add-on – Separately licensed functionalityFull functionality

A white paper issued by: Siemens PLM Software

White paper | Agile, software requirements management and regulatory compliance: a practical Live approach

19

Siemens PLM Software

Headquarters
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 972 987 3000

Americas
Granite Park One
5800 Granite Parkway
Suite 600
Plano, TX 75024
USA
+1 314 264 8499

Europe
Stephenson House
Sir William Siemens Square
Frimley, Camberley
Surrey, GU16 8QD
+44 (0) 1276 413200

Asia-Pacific
Suites 4301-4302, 43/F
AIA Kowloon Tower,
Landmark East
100 How Ming Street
Kwun Tong, Kowloon
Hong Kong
+852 2230 3308

www.siemens.com/plm
© 2016 Siemens Product Lifecycle Management Software Inc. Siemens and the Siemens logo
are registered trademarks of Siemens AG. ALM, D-Cubed, Femap, Fibersim, Geolus, GO PLM,
I-deas, Insight, JT, NX, Parasolid, Polarion, Solid Edge,Syncrofit, Teamcenter and Tecnomatix
are trademarks or registered trademarks of Siemens Product Lifecycle Management Software
Inc. or its subsidiaries in the United States and in other countries. (Conditional by document:
Automotive SPICE is a trademark or registered trademark of Verband der Automobilindustrie
e.V. MATLAB is a tr ademark or registered trademark of The MathWorks, Inc. Microsoft Office
is a trademark or registered trademark of Micro soft Corporation.) Other logos, trademarks,
registered trademarks or service marks belong to their respective holders.
55664-A6 8/16 F

About Siemens PLM Software
Siemens PLM Software, a business unit of the Siemens
Digital Factory Division, is a leading global provider of
product lifecycle management (PLM) and manufacturing
operations management (MOM) software, systems and
services with over 15 million licensed seats and more than
140,000 customers worldwide. Headquartered in Plano,
Texas, Siemens PLM Software works collaboratively with its
customers to provide industry software solutions that help
companies everywhere achieve a sustainable competitive
advantage by making real the innovations that matter. For
more information on Siemens PLM Software products and
services, visit www.siemens.com/plm.

About the author
Dr. Stefano Rizzo is a product leader and visionary at Siemens
PLM Software. He has some 18 years of IT consulting and
mentoring experience in several different business areas
including finance, telecom, software and government. As a
mentor he has helped dozens of big companies introduce new
development processes and methods. As a teacher he has
trained thousands of people in UML, requirements manage-
ment, and Agile development. As a methods evangelist he has
helped hundreds of companies to share his vision about
collaborative software development. His actual focus now is
researching and developing methods and best practices for
Agile and Live software development processes.

