-y
.

DIGITAL INDUSTRIES SOFTWARE

Polarion application
lifecycle management

Leveraging DevOps as a natural component of ALM

Executive summary

This white paper describes how Siemens Digital Industries Software builds Polarion™
software using a DevOps approach. It provides an overall picture of the toolchain we use
and how we guide our process, while outlining several examples you can easily
implement in your production environment.

siemens.com/software SI E M E N S

gy ———
’-ﬁmw--

— w4

White Paper — Polarion application lifecycle management

Siemens Digital Industries Software

Contents

Abstract

The process for complex development
Business requirements

Capabilities

Features

Customer request — enhancement request
Product backlog item

Task

Test

Test run

Planning

Software development lifecycle

Source code branching and committing

Continuous deployment

Conclusion

OO O O OO0 o0 o U1 Ul W W

10
10
16

18

White Paper — Polarion application lifecycle management

| Abstract

It has become common for analysts to replace the
term application lifecycle management (ALM) with
phrases like enterprise agile planning tools (EAPT)
and software lifecycle management (SLM). Some
analysts suggest there is no need for ALM and
everything can be done via popular DevOps tools
like GitLab or GitHub. However, DevOps can be a
natural component of ALM, depending on how
well an ALM tool implements the DevOps domain
and integrates with its established solutions.

The process for complex development

A complex development requires a complex
process. The process must ensure the plans are
realistic, correspond with quality guidelines,
ensure security, enable teams to collaborate
effectively and so on. In this section we'll discuss
the problem statement and the problem solution.

What we have:
* A complex product

* The release cadence is known in advance and
must be followed

* Every release should have substantial
functional and quality increments

* A continuous demand to change or adopt a new
architecture and update the user
interface (Ul) to align with other Siemens prod-
ucts and implement the best Ul practices and
components

e Scrum teams that integrate different
components to the product line and must be
aware of crossover dependencies

Siemens Digital Industries Software

e Cross-product maintenance tasks (defect fixing,
performance and scalability improvements)
that typically affect many areas of the application.
These are not the responsibility of a single team
and their impact on the codebase can be
far-reaching

e Continuously changing prioritizations
(new/funded projects, customer escalations
and estimate changes) that may lead
backlog reprioritization

What we need:

e An infrastructure that enables several teams to
work in parallel without disturbing each other,
especially during the integration phases

e A system that can track how the execution of
multiple topics progresses for reporting and
synchronization purposes

» Developed features that are thoroughly tested.
This should be done locally by the development
team and again after integration. This ensures the
general stability of the release and eliminates
possible regressions

* Multi-level integration of the source code that
provides traceability between tasks/requirements
and the code (enables the code review process to
make sure that all changes can be audited

White Paper — Polarion application lifecycle management

* A useable collaboration platform for teams to - On-site customer support. This typically
effectively consult with each other. It should means having a product manager and/or
help facilitate: owner continuously available for ad

. . . . hoc consultancy
- Discussion threads with an easy way to find

notes and conclusions * The ability to report progress continuously

. . . . and rapidly
- Requesting and receiving specific expertise

from the entire community

Big Picture

Deplo
/ >Ref\ects

Polarion \gitLab

Docker
I~

Business

i —————————p| Automated Tests
[Requlremem] Suldreport [Masten]—'[Master Build }——,Tnggers

(view of Test Runs]|
{ Capability] \
...................... >
Customer MeiRe [¢D Build msa‘:lﬁg ------------- Deploy
[Feature J [Request or J /
El]_ -

R | __Triggers

Triggers
Product Backlog Item Team : -7
(UserStory, R Sl ade 1
D S created >[Branch Review \7\ Automated Tests

Linked Revision

Traceability
1T~) .-~ Deploy ”
i i Depl d d *, o
Tl Linked Revision__} gennlt n th;::;“amg _E,p.?-y aeaman No réal defects will be created,
Traceabili g - as the process will stop the merge

T
Started automatical

Cl Build
(Compile,

Team Server

Warnings)

LT =
Manual Tests Manual Tests
[Reports results..-*

Deploy on demand

o
Creates
slack IDE (Eclipselmtelli)/...)
Story-level
Channel
Bots Source File

Publishing/

Retrieving ltems

WorkRecord Expose of threads
reports

SME Channel [Local Build] Autorqrzt;g

Figure 1. Polarion’s R&D process in visual form.

Siemens Digital Industries Software

White Paper — Polarion application lifecycle management

Siemens’ toolset and infrastructure:

* Polarion — central access point:

- General process orchestration

- Artifacts (requirement documents, stories,
tasks, defects, tests, etc.) lifecycle manage-
ment, including full traceability of changes
and workflows as the standard operating
procedure (SOP) driver

- Estimation, prioritization and planning

* GitLab — build management and a continuous
integration (Cl) and continuous delivery/deploy-
ment (CD) infrastructure:

- Branching and merging
- Compiling and building
- Test automation execution

* Hardware and software virtualization:

- A set of servers and containers for local
and global test environments
- Team-specific test servers

- Version-specific reference servers to
reference, for example, how a feature
worked in a specific past product version
or to replicate an issue

- Monitoring, auto deployment, etc.

* Development/engineering tools:

- Java IDEs — Eclipse, IntelliJ, VisualStudio, etc.
- Profiling tools and frameworks — JProfiler, etc.

- Test automation tools/frameworks —
Selenium, Junit, Cucumber, etc.

- Documentation tools and frameworks — X-cat,
Oxygen, Jabber, etc.

¢ Collaboration tools:

- Instant messaging (IM) — Slack,
MS Teams, etc.

- Filesharing — OneDrive, SharePoint, etc.

Siemens Digital Industries Software

Polarion is part of the Xcelerator portfolio,
the comprehensive and integrated portfolio
of software and services from Siemens Digital
Industries Software.

Business requirements

Developing a great product begins with constructing
innovative ideas on how to address existing or
projected customer needs. Ideas can be new or
based on improving on existing functionalities and
they can be used to implement established solutions
in the real world. Typically, business requirements
are represented by a set of documents that describe
the problem statement and a proposal of what must
be addressed. These requirements will be imple-
mented in our environment following the Scaled
Agile Framework (SAFe) and by using Scrum/Kanban
on the team level.

SAFe is a knowledge base of proven integrated
principles, practices and competencies for lean and
agile methodologies and DevOps, enabling large
enterprises to idealize, plan and execute big projects
that have dependencies, business constraints, etc.’

Capabilities

A capability is a higher-level solution behavior that
typically spans multiple Agile Release Trains (ARTs).
Capabilities are sized and split into numerous
features to facilitate their implementation in a
single program increment (Pl). A typical capability in
our context will be a significant portion of a func-
tionality, for example, related to a particular domain
or commonly used set of services and frameworks,
or a new architecture approach.

Capabilities get grouped into epics to enable a
higher level of aggregation and strategic planning.
An epic is a container for a significant solution
development initiative that captures the more
substantial investments in a portfolio. Due to their
considerable scope and impact, epics require the
definition of a minimum viable product (MVP) and
lean portfolio management (LPM) approval prior
to implementation.

Typically, epics and capabilities require the most
attention from top management, product manage-
ment and developer leads because these managers
control how the budget is aligned across teams,

White Paper — Polarion application lifecycle management

corresponding capacities given, the execution plan
is drafted and the risks identified. Often, the capa-
bilities are not linked directly to a customer commit-
ment and serve as a platform for implementing
many of the features described below.

Features

A feature is a service that fulfills a stakeholder
need. Each feature includes a benefit hypothesis
and acceptance criteria, then is sized or split as
required so that it can be delivered by a single

ART in a Pl. For us, a feature may represent a busi-
ness case, which is a sellable, functional and self-ef-
ficient implementation.

Customer request — enhancement request

An enhancement request (ER) is recorded when

a business customer requests the enhancement

of an existing functionality. Typically, they are
usability or functional additions to what was deliv-
ered out-of-the-box (OOTB) and should increase
productivity. These items are prioritized by support
and product management, then added to the devel-
opment backlog.

Product backlog item

A product backlog item is anything in our process
that must be scheduled in a sprint. User stories,
product-wide defects and patches are all product
backlog items. We initially referred to all of them as
user stories, but as our process evolved, we split
them into additional categories because different
stakeholders prioritize different things. For example,
defects are triaged and prioritized by a committee.
Once that is complete, the team'’s product owner
determines an appropriate sprint priority. On the
other hand, patches are decided by product
management. Once decided, patch creation and
distribution to customers typically gets passed to a
team. This team might not have had any involve-
ment in fixing the defects addressed by the patch.

Siemens Digital Industries Software

A user story is the most widely used agile item for
capturing needs and requirements. Its purpose is to
capture the natural conversation surrounding what
must be built in the product from the user’s perspec-
tive. It should initiate and track the discussion
between who wants the feature and the developers
that are tasked to build it. It is essential that devel-
opers understand the feature’s intended use and
create the best possible solution in architectural and
technological boundaries. When the development
team understands why a user wants it and what the
user wants to achieve, they can come up with a set
of possible solutions.?

Task

A task is a piece of work that brings the user story
toward its implementation. Usually, several tasks
are created for a user story to identify how much of
a team’s involvement is required and whether other
parties should be involved in the sprint.

Test

Apart from the Definition of Done (DoD) and the
acceptance criteria of a user story, a set of tests can
be defined to provide repeatable evidence that a
delivered functionality works as intended in current
and future contexts. Many of the tests are written in
code (test automation) and do not require individual
authoring as a work item for a user story. However,
when the automatic test is executed, the corre-
sponding object is automatically created and the
execution results are tracked in Polarion for each
test run.

Test run
A collection of tests executed to prove a selected
product area functions correctly.

Planning

While planning strategically, capabilities are priori-
tized and assigned to their corresponding depart-
ments. Then, they are estimated and provided with
the relevant capacities to establish their completion.

White Paper — Polarion application lifecycle management

L _
.« I | .

Hign pe.0 7 [1

r 9 L r 3 R 50 R

Figure 2. Capability review report.

On the product/project level, a plan may be distributed among Scrum teams to make
sure the work is distributed appropriately and required synchronization is identified.

Team FY20 Q3 /20 R2 FY20 Q4 /20 R2 FY21Q1/21R1 FY21Q2 /21 R1 FY21Q3 /21 R2 FY21Q4 /21 R2
20 R2 MS1 20 R2 MS2 21R1 Ms1 21R1 MS2 21 R2 MS1 21 R2 MS2

Lambda:

Omega:

Sigma:

Figure 3. Distribution of plan among Scrum teams apability review report.

Siemens Digital Industries Software

White Paper — Polarion application lifecycle management

When the planning reaches the Scrum team level,
capabilities are broken down into features and then
into user stories — defects, patches, or other rele-
vant project backlog increments (PBIs). On each
level, related activities need to be planned and have
their progress evaluated over time. For example, a
capability must be aligned with the capacity of the
assigned team(s) and features. It should also be
planned so it can be delivered to a customer by the
target date. Teams should be able to assess a user
story’s level of complexity based on the number of
story points assigned to it.

#* Create * o il
Name Status Progress Due Date -
v @l 21R1 +} Open
PolarionSVN - ~ [21 R1 MS1(2020-12-01) 4§ Open 2020-12-01
v @l 21 R1MS1 - Team Sigma (2020-12-02) #k Open 2020-12-02
(il 1347 - Team Sigma (2020-09-22) # Done 2020-09-22
o (@l 1348 - Team Sigma (2020-10-06) # Done 2020-10-06
Nick Entin
: @il 1349 - Team Sigma (2020-10-20) ok In Progres 2020-10-20
My Polarion ' g
Ivew tmpioyee Hanaboox [0l 1350 - Team Sigma (2020-11-03) +# Open 2020-11-03
PR [d) 1351 - Team Sigma (2020-11-17) + Open 2020-11-17
Nm' (] 1352 - Team Sigma (2020-12-01) +} Open 2020-12-01
YN s * @ 21 R1 MS] - Team Omicron (2020-12-02) 4 Open 2020-12-02
solete Omega Stu
(i) i347 - Team Omicron (2020-09-22) # Done 2020-09-22
Omega
Omicron [Properties %t - [©]
Redorpieet [@ 21R1> (@l 21 R1 MS1 (2020-12-01)
Product Management 1
P () 21 R1 MS1 - Team Sigma (2020-12-02)
Quality Assurance
R tm 1347 —Team Sig () 1348 Team (il 1349 - Team Sigma (2020-10-20) (il 350 - Team Sigma (2020-11-03) (i) i351 - Team Sigma (2020-11-17) (il 352 - Team Sigma (2020-12-01,
Rest API
Retrospectives Capability Roll-up Date
Saas
Code F 2020-11-17
Dev.Releaseday 2020-12-02
gy item Status 0 Open | Done RE s %
Sloma (=))PMT-1525 - Reduce indexing time on data with long his.. (O Targeted Polarion21R1 & 0 53d7h 40d 6h a3% Score Board
Sh (=) (54 PMT-1976 - Smart caching of historical objects - 21.. gk In Progress Polarion 21R1 3 0 24d Th 40d 6h 2%
Team Center (B)DPP-214136 - Caching: Implement checker for datam... <¥Ready ~ 321.1(1R1-.. - - 4d oh 0% “RE/PBIs with target release 321.1
Team Epsilon [B)DPP-214350 - Caching: Add extra tests to avoid incorr.. >*Merged 3211 (21R1-.. - - oh 21d5h 100%
Taam Eambda _ [EIDPP-214946 - Caching: Enable caching by default b InProgress 3211 (1R1-.. - - 20d 7h 19d 1h a% o o
Tachnolqy Makderanca (=) PMT-1707 - Faster indexing of Test Runs with long .. <fReady Polarion21R1 1 0 15d oh 0% °© ot
» 5 ux E9DPP-210177 - Indexing history of Test Run with thous... <¥Ready 3211(1R1-. - - 15d oh 0% Committed 2 2
lities:
S : (=) §PMT-1843 - Improve indexing parallelization HReady Polarion21R1 1 0 sd oh 0% Capabler:
kiComponen
= e DPP-210470 - Revisit max number of parallel workers .. <¥Ready 3.21.1(21R1-.. - - 5d 0Oh 0% fﬂ':"“"“d 9 9
» B X - eatures:
- : (=) EPMT-1941 - Prevent superfluous commits to SVN .~ Draft Polarion21R1 1 0 9d oh 0%
v] Plans 9 DPP-205518 - Superfiuous changes to container objec. HReady 3211Q1R1-. - = 9 oh 0% Committed PSls: |45 .
i (=) (3PMT-1933 - Address critical performance deficiencies of.. O Targeted Polarion 21R1 4 0 65d oh 0%
Bt (=) 3PMT-1934 - Fast handling of jobs in the cluster . Draft Polarion21R1 3 ° 35d oh 0%
EDDPP-101371 - Clustering: Loading of jobs in Monitor . HReady 3211@1R1-. - - 15d oh 0%
Z1R1 EDDPP-211060 - Inefficient getting of import / export job... <¥Ready 3211 (1R1-.. - - oh oh 0%
[BIDPP-214902 - Clustering: Better filtering of the jobs in .. «¥Ready 3211 (1R1-.. - - 20d oh 0%
(=) E5PMT-1935 - Active load-balancing in the cloud . Draft Polarion21R1 1 0 30d oh 0%

Figure 4. Relevant activities for an upcoming PI for a Scrum team.

Siemens Digital Industries Software

White Paper - Polarion application lifecycle management

Burn Down Chart

See also preconfigured Burn Down report where you can play with chart's settings and see list of items. ing: While the estii are historical, query is d
only once on HEAD.

Burn Down 2020-09-09 - 2020-11-17
Query: project.id:PolarionSVN AND type:(defect userstory) AND targetRelease:(3.21.1) AND NOT HAS_VALUE:notForCF

@ — Initial ~— Ideal Progress

Figure 5. The corresponding execution progress can be monitored via a burn down chart.

The graph above reflects our level of agility.

After starting a Pl and planning and estimating,
the estimates continue to change, usually rising.
The gap between the remaining estimate and the
ideal progress is expected because we only burn
points after the planned PBIs are completely done.
This usually takes a little time before it is reflected
in the burn down chart.?

003 004 005 O0s Oa07 008 O09 OAt0 Octil Otz Oct13 Octi4 Octis Oet1s

Figure 6. Possible burn down chart.

Siemens Digital Industries Software

White Paper — Polarion application lifecycle management

& Properties 3 -

@l 21R1> (il 21 R1MS1 (2020-12:01) > Gl 21 RY MS1 - Team Delia (2020-12-02)

"l 1349 - Team Delta (2020-10-20)

A This team has 8 items needing update.

Sprint Goal

- Refine initial Scripting storage stories (Ready state)

™ Browse All Planned tems

6 Merged

Wit prioritize Plan % Add Items to Plan

5 In Progress

Upgrade PDAML
08

o @ore-213792 1

Document should not need
o A oy Work:

1 Ready For Merge

it

Wor

Typ

» @oep-92128

3+ @opp-213564 1

Do
yoe ot f
3 0pp-; =]

& @orp215228 + @ors9s300 [

Support custom feld type T RenderngaPt for custom fie
able i Excel mxport ffrom W 1dtype 22437344

X @0PP-211079 -

Backlinks ave not exported

& @0Pp-211080 "

o @orp-91877 B

;gmuws;.

§

LiveDoc Export WORD roun
d-tro dows NOT preserve ‘st

+
Toses rich text fo A
o @0PP-206212 -
Test Steps: Fist character of

agomun g

Support custom field type T

Np—

exnort (from W

Support custom fied type T
able in DOC expert tfrom

>+ @0PP-212157 u

m o

| Table typec.

st

Figure 7. A concrete sprint.

Software development lifecycle

With Polarion, most of the code is written in Java,
so we use the following integrated development
environments (IDE) to code for it: Eclipse, IntelliJ
and others. These IDEs are well integrated with the
revision control systems (RCS) we use (GitLab) and
enable additional functions like static code analysis
or the execution of automated tests directly on
newly written code.

Source code branching and committing

One of our most important best practices is to only
make changes to the code base when there is a
compelling reason to do so. These changes are
always done via a PBl. When a user story or defect
transitions to in progress a GitLab branch is
automatically created as part of the workflow.

Polarion enables the automation of these
procedures by defining workflow functions
for the corresponding work item types.

Siemens Digital Industries Software

Team Members

LEE LA

—_
25d 3h To Do =
Sprint Bum-down Chart

ol

g 20
20
.
604 80a 10.0a 1204 14.0¢ 1604 1.0d 2.0
® IdoaiWorkToDo @ Work To Do Relative Progress.
Last 5 Sprints
PBlsDone PBls Done
Plan Capacity. PBis Done (#) size (SP) size (IEd)
o 349 352 2 o 10
Toam Dotta
Initial content
PBI Draft
Assigned Team
Refined
PBI Ready Estimated

!

PBI In-Progress

"
Traceability

Traceability

Traceability .,

Work-records
Workflow
.
triggers creation —>| GitLab Branch

Master Branch

eady for Merge
Checklist

PBI Merged

Done
Checklist

PBI Done

Automatic
Status propagation

Traceability to Master Branch
Merge Request reference

Figure 8. General PBI lifecycle.

Merge

In case of failed merge
Master branch is locked
PBIis escalated and
corrective actions scheduled

10

White Paper — Polarion application lifecycle management

Parameter for: ScriptFunction

Close

Parameters -
Name Value Actions
engine is -

script 2019 pbis/createBranchOnGitlab.js -

Figure 9. Registration of a script, which automatically creates a branch on GitLab as part of the product
backlog item workflow execution.

To improve collaboration, we also automatically create Slack notifications so all team
members are informed of an item’s progress and can discuss issues and obstacles
more organically in real time.

Parameter for: ScriptFunction

Close

Parameters -
Name Value Actions
engine is -

script 2019 pbis/send_create_pbi_channel slack messagejs -

Figure 10. Registration of a script, which notifies the team in a Slack channel about changes to the
product backlog item.

Siemens Digital Industries Software

White Paper — Polarion application lifecycle management

Polarion v

team_sigma

v Direct mess

Figure 11. The Slack interface.

.
Q Search Polarion @

#team_sigma I ol ! 35 2+ @

® 1 | https:/meet.ugs.com/qcdp3v/3T7BLRZL

w CNS Bot APP 949 AM Monday, July 20th v

ave: Workltem status changed!
DPP-211142 - Measurements: Ensure that the Persona test environment and config is
stable

From status: [inprogress] to status: [ready]
Assignee:

IR/ [4replies Last reply 3 months ago

CNS Bot APP 9:54 AM I
we: Workltem status changed!

DPP-213614 - Caching: Add records into ObjectMaps for bidirectional reference

relations/fields

From status: [ready] to status: [inprogress]

Assignee:

When a developer is ready to make changes to a
GitLab branch, they include the PBI's work item ID in

the Git commit message. All changes are linked to

the item that prompted them.

The system of IDs works differently in Polarion

compared to similar tools. The prefix identifies the

project where the work item is stored. DPP is a

prefix for items in our production project. The

second part assigns a numeric identifier that is

unique to the project.

4 Linked Revisions

Revision Message

4 DRP-213906 Optionally convert invalid characters in userlD when authenticating via SA 3.20.2 (20 R2) # Done
[2)BPR213899 Analysis: Implementing Siemens Guidelines using React and components 3.20.2 (20 R2) # Done
[2)DRR-213854 Document the best svnserve configuration for 20 R2 3.20.2 (20 R2) ¢ Done

(7 edit &~ ® 9 @ YO |» (€|

[ba1fdo6bfb4ec DPP-213906 SAML login with invalid characters Replace invalid characters with underscore character

[{3 bc9532988e51 DPP-213906 SAML login with invalid characters Replace invalid characters with underscore character only if enabled by custom prope
[{3 2/55050173f09 DPP-213906 SAML login with invalid characters Code review fixes - added comment to IDataService.ID_INVALID_CHARS - reduced du
[{319275dd54d57 DPP-213906 SAML login with invalid characters Replace only first occurrence of at sign and dash character if user id is starting with it.
[i3 c20ee3d2cc64¢ DPP-213906 SAML login with invalid characters Code review fixes - simplified replacement of at sign, dash character if username start
[F5 732h32f7h39F) Merae branch 'ni DPP-213906 saml loain with invalid characters' inta 'master’ DPP-213906 SAMI laain with invalid characters See

Figure 12. Example of commits tied to a specific work item.

Clicking on the linked revision will open the

GitLab Ul and display the changes.

Siemens Digital Industries Software

12

White Paper — Polarion application lifecycle management

GitLab
Commit ba1fdosb (3 authored 2 months ago by wm - Browsefiles Options ~
Polarion ALM
@ Project overview DPP-213906 SAML login with invalid characters
N Replace invalid characters with underscore character

B Repository

Files

< parent cddc929b Pmaster <

‘Commits.

Branches $) 2 merge requests 14418 WIP: DPP-214087 resolve wf signatures via lucene, !4398 DPP-213906 SAML login with invalid characters

Tags

(%) Pipeline #950364 failed with stages (¥) (¥) (%) (») (») (») (»)in 113 minutes and 34 seconds
Contributors

(G Changes 2 Pipelines 2

Compare —

icedities Showing 2 changed files + with 77 additions and 0 deletions Hide whitespace changes Inline Side-by-side
D ssues g -B i R iation st :)) —

[View file @ ba1fdosb

(2 Custom Issue Tracker

1% Merge Requests a public class SSOLoginHandlerTest extends TestCase {

4 ci/co 3 e — - - - =

% Operations i
icationProvider ider;

A aciages & Regeiries SSOLoginHandlerImpl ssoLoginHandler;

assertNotNull(credentials.getPassword());

Lt Analytics 3}

0 wiki public void testAddWithForbiddenCharacterInUsername() throws Exception {
31 ion fakeConfiguration = new FakeC ation();

X snippets 32 fakeConfiguration.securityConfiguration.authiethod = “SAML";

Configuration.override(fakeConfiguration);

Figure 13. The review of changes in GitLab.

With the review of changes in GitLab, this facilitates the code review process.

Overview 0 Commits 11 Pipelines 3 Changes &

% Compare master v and latest version v files +188 -2 £ v

v e i i i i i jiceDoc... [3
21 0O 2 0 B
24 + private static final String ERROR DURING_METHOD_CALL MESSAGE = "Error occurred during the
execution of a remote method call.";
private final SessionWebService sessionService;
private final TrackerWebService trackerService;
private final String projectId;

t Show unchanged lines %

enunOption = new EnumOption(trackerService, projectld);

}
@othull
public WebServiceDocument deleteDocument() {
try {
trackerService.deleteModule(docunentURI());
} catch (RemoteException re) {
throw new ActionWasNotDoneException(ERROR_DURING_METHOD_CALL_MESSAGE, re);
}
return this;
}
@otNull
public i 1 docunentType, @NotNull WorkItenType

workItenType) {

return create(docunentNae, docunentType, workItenType);

1 Show unchanged lines T
try {
trackerService.createDocument (projectId, spaceName, documentName, documentTitle,

documentWiType (workItenType), enunOption.workItenLinkRole (WorkItenRole.HAS_PARENT), null);

} catch (RemoteException re) {

58 throw new ActionWasNotDoneException(“Error occurred during the execution of a remote
method call.", re);
69 4 throw new ActionWasNotDoneException(ERROR_DURING_METHOD_CALL MESSAGE, re);
¥

setDocunentType(documentType) ;

Figure 14. The code review process.

Commenting on a change starts a discussion. All discussions must be resolved
before a PBI's status can be changed to ready for merge.

Siemens Digital Industries Software

White Paper — Polarion application lifecycle management

= Checklist for Ready for Merge s

OK-ed by PO Express the approval of the item. PO is responsible for the stakeholder feedback.
OK-ed by UX UKX Status is "Verified" or "Not Required", approving UX person is set
Documented Insert the link to the documentation item(s)
Deployed Confirm that the changes were checked on an installed build
API reviewed Confirm that there is no pending API review and feedback
Unit and Platform tests Confirm the test coverage.
Link to a pipeline with clean unit, platform and cluster tests (or to a pending merge
request showing it)
Manual tests Insert the reference to the test specification document.
Link the task and/or Test Run rep ing the manual regression test.
Selenium tests Insert the reference to new automated tests.

Link to the pipeline with all Selenium tests passed.

rf tests and Insert the reference to new automated perf. tests and the performance assessment
summary.
Insert the link to performance Test Runs (for both normal performance tests and
bigdoc p tests), if available ically run only for master, but
resources slots may be available to run on other branches as well, if needed.)
Are load tests needed?

Figure 15. Template for the ready for merge checklist.

Checklist for Ready for Merge

OK-ed by PO +" OK-ed by PO.

OK-ed by UX + Not required.

Documented + Documentation update tracked by () BPP-213186 - Documentation: Work Items Tree View - Disable
autorefresh.

Deployed v 3.20.2.20200807-1253-DPP-214342-48c1e741.

API reviewed N/A.

Unit and Platform tests v https://gitlab.industrysoftware.automation.siemens.com/polarion/polarion-alm/pipelines/978388.

Manual tests v B DPP-214574 - Test Property for switching the Autorefresh of Tree View on/off.

Selenium tests + No new Selenium tests. Reverted tests affected by (3] BPP-211576 according to the description.

https://gitlab.industrysoftware.automation.siemens.com/polarion/polarion-alm/pipelines/978388.

Performance tests and assessment N/A.
Figure 16. Example of the populated table.

Whenever an item is marked as ready to merge, the responsible engineer can
trigger a merge pipeline. The steps are as follows:

1.Integrate the change to the master branch.

2.Compile sources and prepare binaries.

3.Run unit-tests, application programming interface (API), free and open-source
software (FOSS) and other checks.

4.Deploy the binaries to a test environment.

5.Run Ul-test suits on the environment.

6.Run load, stress and performance tests on a reference environment.

7.Collect the results of all test runs and report back to Polarion.

8.Prepare a shippable package.

Siemens Digital Industries Software

White Paper — Polarion application lifecycle management

selenium-tests: passed
@ Pipeline #982401 passed for ba94c12d on master @ @ @ @ @ @ @ @ ° @ @

@ brt_document_edit.

&0 ¥o0o © Oldest
@ brt_document_edit.
[N] approved this merge request 2 months ago @ brt_document_edit
I . approved this merge request 2 months ago @ brt_document_wor.
= EEE unmarked as a Work In Progress 2 months ago @ brt_easy_linking_te.
[=== g] started a merge train 2 months ago @ pridgenaralitests

Figure 17. The pipeline execution status in GitLab.

The merge request is expected to be successful. Pipeline types that facilitate the different product-
Before it gets added to the master, the team must life-cycle phases

run the same compilation, unit and Ul tests on their

* Master —runs on every push to the master,

local branches and team servers. o ;
all tests, distributions, installers and dockers.

One aspect that requires special attention is .
* Release — runs when any tag is created. Runs all
performance tests. They are executed on a refer- o]
. . tests, distributions, installers, dockers and pack-
ence environment that often differs from the
. ages the release.
development environment. As a result, performance

tests that succeed on the local branch may fail on e Post-release — runs on every push to the release
the master. branch. Runs unit and platform tests, all distribu-

. tions, installers and dockers.
What we do when this happens

. * Pl merge request — runs on every push to a Pl
Before a PBI can be closed, we confirm there are no . .

. o, branch with an open merge request, runs consoli-
regressions and make sure the pipeline’s perfor- L .

. o dated stage which is the same as consolidated
mance tests pass. If any suspects are identified, we T o .
. custom pipeline, but each job is executed only if
lock the master branch and no new commits are
]] o o there are relevant changes.

allowed until the situation is clarified. From here,

we identify if it is a temporary outage, a side effect e Custom — teams can create pipelines on-demand
of something on the test server or a genuine regres- with custom parameters.
sion. The team that created the suspicious merge .

. . After a successful merge to the master, the following
request makes it their priority to address the . . .

o . . checklist must be filled out in the user story.
problem, even if it means rolling back the commit.
Then the master branch is unlocked and further

commits are allowed.

Siemens Digital Industries Software 15

White Paper — Polarion application lifecycle management

= Checklist for Done

----- before filling this, please copy the most up-to-date template from 2] DPP-37039 - User Story Template ----

Merged to master

Automated tests run on master

Insert the link to the completed merge request

Insert the link to the pipeline showing the clean run of unit, platform, cluster and Selenium tests.
Insert the link to the performance Test Runs from master (for both normal performance tests and
bigdoc performance tests)

Master is not locked after the merge Means that the above pipeline has fully completed and succeeded and there is no other master-

Deployed
Branch(es) removed

OK-ed by QA

locking issue shown on | Test Dashboard either. Also implies that the Selenium test results were
imported to CNS (providing the link is optional).

Confirm successful deployment on ea-latest/qa-latest (e.g. with reindex, if needed)
Confirm that the pi_ branch is removed, as well as any wi branches for the subitems

Expressed by closing this item or explicitly here if not closed by QA

Figure 18. An example of a completed checklist (A).

Checklist for Done

Merged to master

Automated tests run on

master

Master is not locked after the

merge
Deployed
Branch(es) removed

OK-ed by QA

v https://qitlab.industrysoftware.automation.siemens.com/polarion/polarion-alm/-/merge_requests/4445.

+ Platform and Selenium tests passed: https://gitlab.industrysoftware.automation.siemens.com/polarion/polarion-
alm/-/pipelines/986282.

Perftests passed: & 20200816-1448-master-b59d46a3_performance_jdk11_989261_5995340 - performance.
BigDoc tests passed: & 20200815-2127-master-b59d46a3_bigdocperformance_jdk11_202008160714 -
performance.

+ Not locked.

+ 3.20.2.20200818-0849-master-1a0faedd.
+ Removed.
v OK.

Figure 19. An example of a completed checklist (B).

Continuous deployment

Whenever a commit happens on a branch, the CD is
configured to grab the results and deploy them to a
server for debugging, testing, reference implemen-

tation or deploy the master branch results to an

internal production environment. This helps us

complete the first level of testing in a practical

environment before customers see it. We have been

doing this method called dogfooding with Polarion

from the start.*

Siemens Digital Industries Software

16

White Paper — Polarion application lifecycle management

Master Branch
GitLab Branch

Server/Docker

Merge ——>| Pipeline HPu

et
h—>| Deployment

Figure 20. Lifecycle of a product backlog item in a branch of GitLab, with
continuous deployment to a test environment.

A continuous deployment of the master branch is

always desired. This means its pipeline ends with

100 percent positive results. However, local

branches may depend on the status of the develop-

ment cycle. For example, a team may wish to have a

solution running and testable after each commit, so

they configure one of the local pipelines to compile

and immediately deploy to a team server. They may

instead opt for a daily deployment model where the

sever pulls the last available results overnight and

deploys it for use the following day. They can always

start a pipeline manually or request a new deploy-

ment via a command-line script (even to a different

server or a container).

Traceability and impact analysis

Polarion offers an easy way to check the impact and

traceability information on how, for example, a
capability is implemented and/or tested.

GG ¢ B

Show Backinked = Work Items having implements

n

v v pPMII63
ToeMIe
-8

v ID:PMT-1631 4

Tile

« lrole expanded to|s = levels [¥] Include Commits | Fiter Linked Htems

Collections branching, reuse and consd\agy checking
Minor Collection refinements and impr 20R2 Ms2)

@

B 8373205471147 DPP-215543 - IndRefreshChangeProcessor logs n ERROTN

QA IndexRefreshC

14 4edde0fbbe9148d Merge branch ‘pi_DPP-215543_index-refresh-error' into ‘master’ DPP-2'

- IndexRefreshc!

be displayed after

Target Release Status
Polarion 20R2

8

Q| m-mj|- c-

¢ after
i "
DPP-213925 - Collcti e i felds confi
0PP-213925 - C after 2
1143003162270b05¢ Merge branch ‘pi_DPP-213925_incompatible_collection, CF'into 'master'DPP-213925
Spike: a 3202008 #Done
(DOPP-233340 Prepare a build with optimizations. #Done
(DoPP-233339 Propare a build with logging #Done
@ automated TCs - Part 1 320208 #Done
(DoPR-213804 Verification of automated TCs - Baugi Part 1 #Done
-8 lstis siow 3202@0R2) ¥ Done
@ i # Done
-2 Createa #Done
DPP-213464 - Create
0PP-212855 - C low - FolderManage
K ow - Documents so
B DPP-212855 - Collcti i istis siow - DocumentsRe
K 0PP-212855 - C i low - FolderManage
ow - fxin ProxvDo:
e G

(HPMT-1049 (HPMT-1406 [E)PMT-385 (PMT-603 {3 DEMAND-1080 [FREQ-1899 [BREQ-2276 [BREQ-5117 [BREQ-7945 [BREQ-8140 {HREQ-11892 EpwmT-610 |

(DPL-10s264 &

1. 5PMT-1631 - Coll

reuse and i checking

T pmr-asis pmT-1539 (IPMT-ITI (PMT-1I70 (FPMTITIS #

Type: (i Capability
Author: I
Project: PM Tracker

Categories: ~ Polarion ALM
Pook PM

Budget: Strategic Feature

Assignee(s): g mm—
Y FY20Q4/20R2
Target Release: Polarion 20 R2
Team: Lambda
Delivery Risk: (3] Moderate

Estimate:

2020-10-01 1222
202009-24 0035
020-09-21 2313

2020.06-29 1027
2020.06.25 0901
2020.06-25 0902
2020.07-27 1627
2020.07-271231
20200930 1050
202007021358
20200701 1123

Priority: () Highest [320.0]

Status: + Delivered (Partial)
Resolution: Delivered
Time Spent: 113d 6h

Exposure: Yy External

(Capabilty)

O30

[dRevision 2020.08-17 20
[iRevision 2020.08-18 18
[dRevision 2020.08-1921:
[dRevision 2020.08-20 11
[dRevsion 2020.08:21 13:

(8024 @ User Story 202006-17 13

D500 @rask 2020062220

©500 @ask 2020.06-22 20

2020.0611 11

2020.07-15 09

2020.06-09 10

2020070211

2020.062915

20200629 18:

20200624 15:

20200624 16:

20200624 16:

20200624 16:

20200624 17:

el

(Created: 2020.03-30 21:25, Updated: 2020-09-15 16:17.

Figure 21. Polarion’s break-down structure of a capability. It is split into product backlog
items, defects, tasks and commits to the source control management.

Siemens Digital Industries Software

17

White Paper — Polarion application lifecycle management

| Conclusion

This white paper lays out our best practices in
Polarion development while showing examples of
how DevOps can be a natural component of ALM.
If you have ideas, questions or would like to share
your experience, go to the Polarion community site
to access articles and an open discussion board.

References
1. https:/lwww.scaledagileframework.com/glossary

2. https:/lwww.scrum.org/resources/blog/user-story-or-stakeholder-story
3. https:/ldzone.com/articles/the-ideal-burn-down-chart

4. https:/len.wikipedia.org/wiki/Eating_your_own_dog_food

Siemens Digital Industries Software

18

Siemens Digital Industries Software
Americas: 1800498 5351

EMEA: 00 800 70002222

Asia-Pacific: 001 800 03061910

For additional numbers, click here.

siemens.com/software

© 2022 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

84393-D3 03/22 K

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transformation to
enable a digital enterprise where engineering, manufacturing
and electronics design meet tomorrow. Xcelerator, the compre-
hensive and integrated portfolio of software and services from
Siemens Digital Industries Software, helps companies of all sizes
create and leverage a comprehensive digital twin that provides
organizations with new insights, opportunities and levels of
automation to drive innovation. For more information on
Siemens Digital Industries Software products and services, visit
siemens.com/software or follow us on LinkedIn, Twitter,

Facebook and Instagram. Siemens Digital Industries Software —
Where today meets tomorrow.

