
DIGITAL INDUSTRIES SOFTWARE

Polarion application
lifecycle management

Leveraging DevOps as a natural component of ALM

Executive summary
This white paper describes how Siemens Digital Industries Software builds Polarion™
software using a DevOps approach. It provides an overall picture of the toolchain we use
and how we guide our process, while outlining several examples you can easily
implement in your production environment.

siemens.com/software

Contents

Abstract 3

The process for complex development 3

Business requirements 5

Capabilities 5

Features 6

Customer request — enhancement request 6

Product backlog item 6

Task 6

Test 6

Test run 6

Planning 6

Software development lifecycle 10

Source code branching and committing 10

Continuous deployment 16

Conclusion 18

Siemens Digital Industries Software 2

White Paper – Polarion application lifecycle management

It has become common for analysts to replace the

term application lifecycle management (ALM) with

phrases like enterprise agile planning tools (EAPT)

and software lifecycle management (SLM). Some

analysts suggest there is no need for ALM and

everything can be done via popular DevOps tools

like GitLab or GitHub. However, DevOps can be a

natural component of ALM, depending on how

well an ALM tool implements the DevOps domain

and integrates with its established solutions.

The process for complex development

A complex development requires a complex

process. The process must ensure the plans are

realistic, correspond with quality guidelines,

ensure security, enable teams to collaborate

effectively and so on. In this section we’ll discuss

the problem statement and the problem solution.

What we have:

• A complex product

• The release cadence is known in advance and

must be followed

• Every release should have substantial

functional and quality increments

• A continuous demand to change or adopt a new

architecture and update the user

interface (UI) to align with other Siemens prod-

ucts and implement the best UI practices and

components

• Scrum teams that integrate different

components to the product line and must be

aware of crossover dependencies

• Cross-product maintenance tasks (defect fixing,

performance and scalability improvements)

that typically affect many areas of the application.

These are not the responsibility of a single team

and their impact on the codebase can be

far-reaching

• Continuously changing prioritizations

(new/funded projects, customer escalations

and estimate changes) that may lead

backlog reprioritization

What we need:

• An infrastructure that enables several teams to

work in parallel without disturbing each other,

especially during the integration phases

• A system that can track how the execution of

multiple topics progresses for reporting and

synchronization purposes

• Developed features that are thoroughly tested.

This should be done locally by the development

team and again after integration. This ensures the

general stability of the release and eliminates

possible regressions

• Multi-level integration of the source code that

provides traceability between tasks/requirements

and the code (enables the code review process to

make sure that all changes can be audited

Abstract

Siemens Digital Industries Software 3

White Paper – Polarion application lifecycle management

• A useable collaboration platform for teams to

effectively consult with each other. It should

help facilitate:

 - Discussion threads with an easy way to find

notes and conclusions

 - Requesting and receiving specific expertise

from the entire community

Figure 1. Polarion’s R&D process in visual form.

 - On-site customer support. This typically

means having a product manager and/or

owner continuously available for ad

hoc consultancy

• The ability to report progress continuously

and rapidly

Big Picture

Siemens Digital Industries Software 4

White Paper – Polarion application lifecycle management

Siemens’ toolset and infrastructure:

• Polarion — central access point:

 - General process orchestration

 - Artifacts (requirement documents, stories,

tasks, defects, tests, etc.) lifecycle manage-

ment, including full traceability of changes

and workflows as the standard operating

procedure (SOP) driver

 - Estimation, prioritization and planning

• GitLab — build management and a continuous

integration (CI) and continuous delivery/deploy-

ment (CD) infrastructure:

 - Branching and merging

 - Compiling and building

 - Test automation execution

• Hardware and software virtualization:

 - A set of servers and containers for local

and global test environments

 - Team-specific test servers

 - Version-specific reference servers to

reference, for example, how a feature

worked in a specific past product version

or to replicate an issue

 - Monitoring, auto deployment, etc.

• Development/engineering tools:

 - Java IDEs — Eclipse, IntelliJ, VisualStudio, etc.

 - Profiling tools and frameworks — JProfiler, etc.

 - Test automation tools/frameworks —

Selenium, Junit, Cucumber, etc.

 - Documentation tools and frameworks — X-cat,

Oxygen, Jabber, etc.

• Collaboration tools:

 - Instant messaging (IM) — Slack,

MS Teams, etc.

 - Filesharing — OneDrive, SharePoint, etc.

Polarion is part of the Xcelerator portfolio,

the comprehensive and integrated portfolio

of software and services from Siemens Digital

Industries Software.

Business requirements
Developing a great product begins with constructing

innovative ideas on how to address existing or

projected customer needs. Ideas can be new or

based on improving on existing functionalities and

they can be used to implement established solutions

in the real world. Typically, business requirements

are represented by a set of documents that describe

the problem statement and a proposal of what must

be addressed. These requirements will be imple-

mented in our environment following the Scaled

Agile Framework (SAFe) and by using Scrum/Kanban

on the team level.

SAFe is a knowledge base of proven integrated

principles, practices and competencies for lean and

agile methodologies and DevOps, enabling large

enterprises to idealize, plan and execute big projects

that have dependencies, business constraints, etc.1

Capabilities
A capability is a higher-level solution behavior that

typically spans multiple Agile Release Trains (ARTs).

Capabilities are sized and split into numerous

features to facilitate their implementation in a

single program increment (PI). A typical capability in

our context will be a significant portion of a func-

tionality, for example, related to a particular domain

or commonly used set of services and frameworks,

or a new architecture approach.

Capabilities get grouped into epics to enable a

higher level of aggregation and strategic planning.

An epic is a container for a significant solution

development initiative that captures the more

substantial investments in a portfolio. Due to their

considerable scope and impact, epics require the

definition of a minimum viable product (MVP) and

lean portfolio management (LPM) approval prior

to implementation.

Typically, epics and capabilities require the most

attention from top management, product manage-

ment and developer leads because these managers

control how the budget is aligned across teams,

Siemens Digital Industries Software 5

White Paper – Polarion application lifecycle management

corresponding capacities given, the execution plan

is drafted and the risks identified. Often, the capa-

bilities are not linked directly to a customer commit-

ment and serve as a platform for implementing

many of the features described below.

Features

A feature is a service that fulfills a stakeholder

need. Each feature includes a benefit hypothesis

and acceptance criteria, then is sized or split as

required so that it can be delivered by a single

ART in a PI. For us, a feature may represent a busi-

ness case, which is a sellable, functional and self-ef-

ficient implementation.

Customer request — enhancement request

An enhancement request (ER) is recorded when

a business customer requests the enhancement

of an existing functionality. Typically, they are

usability or functional additions to what was deliv-

ered out-of-the-box (OOTB) and should increase

productivity. These items are prioritized by support

and product management, then added to the devel-

opment backlog.

Product backlog item

A product backlog item is anything in our process

that must be scheduled in a sprint. User stories,

product-wide defects and patches are all product

backlog items. We initially referred to all of them as

user stories, but as our process evolved, we split

them into additional categories because different

stakeholders prioritize different things. For example,

defects are triaged and prioritized by a committee.

Once that is complete, the team’s product owner

determines an appropriate sprint priority. On the

other hand, patches are decided by product

management. Once decided, patch creation and

distribution to customers typically gets passed to a

team. This team might not have had any involve-

ment in fixing the defects addressed by the patch.

A user story is the most widely used agile item for

capturing needs and requirements. Its purpose is to

capture the natural conversation surrounding what

must be built in the product from the user’s perspec-

tive. It should initiate and track the discussion

between who wants the feature and the developers

that are tasked to build it. It is essential that devel-

opers understand the feature’s intended use and

create the best possible solution in architectural and

technological boundaries. When the development

team understands why a user wants it and what the

user wants to achieve, they can come up with a set

of possible solutions.2

Task

A task is a piece of work that brings the user story

toward its implementation. Usually, several tasks

are created for a user story to identify how much of

a team’s involvement is required and whether other

parties should be involved in the sprint.

Test

Apart from the Definition of Done (DoD) and the

acceptance criteria of a user story, a set of tests can

be defined to provide repeatable evidence that a

delivered functionality works as intended in current

and future contexts. Many of the tests are written in

code (test automation) and do not require individual

authoring as a work item for a user story. However,

when the automatic test is executed, the corre-

sponding object is automatically created and the

execution results are tracked in Polarion for each

test run.

Test run

A collection of tests executed to prove a selected

product area functions correctly.

Planning

While planning strategically, capabilities are priori-

tized and assigned to their corresponding depart-

ments. Then, they are estimated and provided with

the relevant capacities to establish their completion.

Siemens Digital Industries Software 6

White Paper – Polarion application lifecycle management

Figure 2. Capability review report.

Figure 3. Distribution of plan among Scrum teams apability review report.

On the product/project level, a plan may be distributed among Scrum teams to make

sure the work is distributed appropriately and required synchronization is identified.

Siemens Digital Industries Software 7

White Paper – Polarion application lifecycle management

When the planning reaches the Scrum team level,

capabilities are broken down into features and then

into user stories — defects, patches, or other rele-

vant project backlog increments (PBIs). On each

level, related activities need to be planned and have

their progress evaluated over time. For example, a

capability must be aligned with the capacity of the

assigned team(s) and features. It should also be

planned so it can be delivered to a customer by the

target date. Teams should be able to assess a user

story’s level of complexity based on the number of

story points assigned to it.

Figure 4. Relevant activities for an upcoming PI for a Scrum team.

Siemens Digital Industries Software 8

White Paper – Polarion application lifecycle management

Figure 5. The corresponding execution progress can be monitored via a burn down chart.

Figure 6. Possible burn down chart.

The graph above reflects our level of agility.

After starting a PI and planning and estimating,

the estimates continue to change, usually rising.

The gap between the remaining estimate and the

ideal progress is expected because we only burn

points after the planned PBIs are completely done.

This usually takes a little time before it is reflected

in the burn down chart.3

Siemens Digital Industries Software 9

White Paper – Polarion application lifecycle management

Figure 7. A concrete sprint.

Figure 8. General PBI lifecycle.

Software development lifecycle

With Polarion, most of the code is written in Java,

so we use the following integrated development

environments (IDE) to code for it: Eclipse, IntelliJ

and others. These IDEs are well integrated with the

revision control systems (RCS) we use (GitLab) and

enable additional functions like static code analysis

or the execution of automated tests directly on

newly written code.

Source code branching and committing

One of our most important best practices is to only

make changes to the code base when there is a

compelling reason to do so. These changes are

always done via a PBI. When a user story or defect

transitions to in progress a GitLab branch is

automatically created as part of the workflow.

Polarion enables the automation of these

procedures by defining workflow functions

for the corresponding work item types.

Siemens Digital Industries Software 10

White Paper – Polarion application lifecycle management

Figure 9. Registration of a script, which automatically creates a branch on GitLab as part of the product

backlog item workflow execution.

Figure 10. Registration of a script, which notifies the team in a Slack channel about changes to the

product backlog item.

To improve collaboration, we also automatically create Slack notifications so all team

members are informed of an item’s progress and can discuss issues and obstacles

more organically in real time.

Siemens Digital Industries Software 11

White Paper – Polarion application lifecycle management

Figure 11. The Slack interface.

Figure 12. Example of commits tied to a specific work item.

When a developer is ready to make changes to a

GitLab branch, they include the PBI’s work item ID in

the Git commit message. All changes are linked to

the item that prompted them.

The system of IDs works differently in Polarion

compared to similar tools. The prefix identifies the

project where the work item is stored. DPP is a

prefix for items in our production project. The

second part assigns a numeric identifier that is

unique to the project.

Clicking on the linked revision will open the

GitLab UI and display the changes.

Siemens Digital Industries Software 12

White Paper – Polarion application lifecycle management

Figure 13. The review of changes in GitLab.

Figure 14. The code review process.

With the review of changes in GitLab, this facilitates the code review process.

Commenting on a change starts a discussion. All discussions must be resolved

before a PBI’s status can be changed to ready for merge.

Siemens Digital Industries Software 13

White Paper – Polarion application lifecycle management

Figure 15. Template for the ready for merge checklist.

Figure 16. Example of the populated table.

Whenever an item is marked as ready to merge, the responsible engineer can

trigger a merge pipeline. The steps are as follows:

1. Integrate the change to the master branch.

2. Compile sources and prepare binaries.

3. Run unit-tests, application programming interface (API), free and open-source

software (FOSS) and other checks.

4. Deploy the binaries to a test environment.

5. Run UI-test suits on the environment.

6. Run load, stress and performance tests on a reference environment.

7. Collect the results of all test runs and report back to Polarion.

8. Prepare a shippable package.

Siemens Digital Industries Software 14

White Paper – Polarion application lifecycle management

Figure 17. The pipeline execution status in GitLab.

The merge request is expected to be successful.

Before it gets added to the master, the team must

run the same compilation, unit and UI tests on their

local branches and team servers.

One aspect that requires special attention is

performance tests. They are executed on a refer-

ence environment that often differs from the

development environment. As a result, performance

tests that succeed on the local branch may fail on

the master.

What we do when this happens

Before a PBI can be closed, we confirm there are no

regressions and make sure the pipeline’s perfor-

mance tests pass. If any suspects are identified, we

lock the master branch and no new commits are

allowed until the situation is clarified. From here,

we identify if it is a temporary outage, a side effect

of something on the test server or a genuine regres-

sion. The team that created the suspicious merge

request makes it their priority to address the

problem, even if it means rolling back the commit.

Then the master branch is unlocked and further

commits are allowed.

Pipeline types that facilitate the different product-

life-cycle phases

• Master — runs on every push to the master,

all tests, distributions, installers and dockers.

• Release — runs when any tag is created. Runs all

tests, distributions, installers, dockers and pack-

ages the release.

• Post-release — runs on every push to the release

branch. Runs unit and platform tests, all distribu-

tions, installers and dockers.

• PI merge request — runs on every push to a PI

branch with an open merge request, runs consoli-

dated stage which is the same as consolidated

custom pipeline, but each job is executed only if

there are relevant changes.

• Custom — teams can create pipelines on-demand

with custom parameters.

After a successful merge to the master, the following

checklist must be filled out in the user story.

Siemens Digital Industries Software 15

White Paper – Polarion application lifecycle management

Figure 18. An example of a completed checklist (A).

Figure 19. An example of a completed checklist (B).

Continuous deployment

Whenever a commit happens on a branch, the CD is

configured to grab the results and deploy them to a

server for debugging, testing, reference implemen-

tation or deploy the master branch results to an

internal production environment. This helps us

complete the first level of testing in a practical

environment before customers see it. We have been

doing this method called dogfooding with Polarion

from the start.4

Siemens Digital Industries Software 16

White Paper – Polarion application lifecycle management

Figure 20. Lifecycle of a product backlog item in a branch of GitLab, with

continuous deployment to a test environment.

Figure 21. Polarion’s break-down structure of a capability. It is split into product backlog

items, defects, tasks and commits to the source control management.

A continuous deployment of the master branch is

always desired. This means its pipeline ends with

100 percent positive results. However, local

branches may depend on the status of the develop-

ment cycle. For example, a team may wish to have a

solution running and testable after each commit, so

they configure one of the local pipelines to compile

and immediately deploy to a team server. They may

instead opt for a daily deployment model where the

sever pulls the last available results overnight and

deploys it for use the following day. They can always

start a pipeline manually or request a new deploy-

ment via a command-line script (even to a different

server or a container).

Traceability and impact analysis

Polarion offers an easy way to check the impact and

traceability information on how, for example, a

capability is implemented and/or tested.

Siemens Digital Industries Software 17

White Paper – Polarion application lifecycle management

This white paper lays out our best practices in

Polarion development while showing examples of

how DevOps can be a natural component of ALM.

If you have ideas, questions or would like to share

your experience, go to the Polarion community site

to access articles and an open discussion board.

References
1. https://www.scaledagileframework.com/glossary

2. https://www.scrum.org/resources/blog/user-story-or-stakeholder-story

3. https://dzone.com/articles/the-ideal-burn-down-chart

4. https://en.wikipedia.org/wiki/Eating_your_own_dog_food

Conclusion

Siemens Digital Industries Software 18

White Paper – Polarion application lifecycle management

About Siemens Digital Industries Software

Siemens Digital Industries Software is driving transformation to

enable a digital enterprise where engineering, manufacturing

and electronics design meet tomorrow. Xcelerator, the compre-

hensive and integrated portfolio of software and services from

Siemens Digital Industries Software, helps companies of all sizes

create and leverage a comprehensive digital twin that provides

organizations with new insights, opportunities and levels of

automation to drive innovation. For more information on

Siemens Digital Industries Software products and services, visit

siemens.com/software or follow us on LinkedIn, Twitter,

Facebook and Instagram. Siemens Digital Industries Software –

Where today meets tomorrow.

siemens.com/software

© 2022 Siemens. A list of relevant Siemens trademarks can
be found here. Other trademarks belong to their respective
owners.

84393-D3 03/22 K

Siemens Digital Industries Software

Americas: 1 800 498 5351

EMEA: 00 800 70002222

Asia-Pacific: 001 800 03061910

For additional numbers, click here.

