
by Lawrence S. Gould > Contributing Editor

development organizations create, deploy,
and operate software over its full lifecycle.”
While product design for physical things
and software things is increasingly
computerized, the processes are different.
Product development, says Rizzo, typically
follows a “cascading waterfall approach”:
product is conceived based on information
from the marketplace, which is translated
into customer requirements, and then into
technical specifications; designed through a
series of steps involving creation, refinement,
testing, and validation; produced using
various manufacturing methods; and then
serviced (including repair, maintenance, and
waste management), which is increasingly
being considered early in product development.

Software development used to follow
the waterfall approach, says Rizzo, but
now it includes application project and
portfolio management, project inception
and requirements gathering, requirements
management, design and use-case analysis,
coding, testing and quality assurance,
build release and deployment, and ongoing
software maintenance. Software development
is very much an iterative process consisting
of “short, rapid `sprints’ with requirements
changing frequently and many ongoing
revisions,” says Rizzo.

Granted, “lean manufacturing” method-
ologies for developing physical products
are similar to the “agile development”
methodologies used in software development.
And PLM does an excellent job at managing
product-related workflows, specifications,

Blame mechatronics. No, even before that:
Blame the increase in software in today’s
vehicles, whether firmware, application
software, embedded systems, or mecha-
tronics. “Software is quickly surpassing
hardware’s dominance in product develop-
ment, particularly within technologically
complex products and industries, such as
automotive, aerospace/defense, and medical
device manufacturing,” according to Stefano
Rizzo, senior vice president strategy and
business development for Polarion Soft-
ware (polarion.com).

Automakers using product lifecycle
management (PLM) for managing the
lifecycles of vehicles cannot be faulted
for turning to these same systems for
software development. It makes sense to
use something PLM-like to hasten time-to-
market, improve the efficiency of software
development, solidify the collaboration

t The Polarion Connector for Team-center
integrates ALM and PLM, which provides
easy access to product and process data
and end-to-end traceability for complex,
multi-system product development.

PLM for managing software is not PLM.
It’s ALM, application lifecycle management.

between everyone involved in software
development (including requirements
specification, coding, testing, deployment,
and continual software maintenance), and
meet regulatory requirements.

One problem: PLM is not efficient at
managing software development. Says
Michael Azoff, principal analyst at the
London-based Ovum Consulting (ovum.
com), “In product development, software
changes are far more frequent than
hardware changes and keeping track of
which firmware belongs to which hardware
component turns into a monumental
exercise in version tracking and traceability.”

Meet ALM, application lifecycle management.

ALM, says Azoff, is “the process by which
information technology and software

REPRINTED FROM: AUTOMOTIVE DESIGN & PRODUCTION MAGAZINE

AD&P > November 2015 > FEATURE > Introducing Application Lifecycle Management > Lawrence S. Gould > lsg@lsgould.com

designs, and versions, but it falls apart doing
the same for software. Software develop-
ment is simply too complex for PLM.

Other differences exist. PLM focuses on
physical, manufactured “parts.” ALM
focuses on software files and items (e.g.,
requirement document, software code, a
test case) and changes to those files and
items. Second, PLM is hardly browser based.
ALM is, which enhances collaboration,
development, test, and deployment. Says
Rizzo, “It is not possible today for a user
to perform a detailed 3D rendering and
bill of materials with traceability links of a
vehicle’s transmission displayed in China
from a server located in Stuttgart.”

Next, PLM traceability focuses on the
decomposition of a complete system; that
is, a part or component as it relates to a

subassembly, which relates to the finished
(assembled) product. In ALM, traceability
focuses on the links between files and
items, even if they exist in different phases.
For instance, says Rizzo, “A change to a
requirement may impact a line of code, or
require a new test case to be developed to
validate the new requirement.” A problem
occurs where PLM considers software a
“part,” but does not consider the details in
the lifecycle development of that chunk
of software. This is especially true in
mechatronics. “Soft-ware quality issues
lie at the bottom of many costly product
failures and may drive a product recall.
And yet product engineers with their PLM
tools lack the ability to get to the bottom of
software related issues,” he continues.

Mechatronics is forcing the need for

both PLM and ALM, as well as the need to
have these systems work together. The PLM
vendors have taken notice. For example,
one of the goals of the partnership between
Siemens PLM Software and Polarion is
the real-time synchronization of software,
electrical, and mechanical development. The
first product as a result became available in
June: version 1 of the Polarion Connector
for Teamcenter, which works with Polarion
ALM 2015 and Teamcenter 10.1.4.

For $890, the connector permits integrated
requirements management (such as the
bidirectional referencing of software and
product requirements), traceability at all levels
(with no data duplication in either PLM or
ALM), integrated software change management
across both PLM and ALM, and closed-loop
embedded systems and software. Benefits of
this approach, explains Vera Sparre, Polarion’s
director of global marketing, include increased
productivity “through closed-loop software
and product development from inception
to end-of-life”; better quality assurance
through “better modeling and simulation as
part of model-based systems engineering for
continuous software validation”; better “cost
containment” through “effective software
delivery and reuse, as well as optimization
of software design decisions in context”;
and better “scalability due to the proven
enterprise infrastructure that requires minimal
organizational adjustment.”

The integration of PLM and ALM winds up
being a more-encompassing realization of
what Siemens PLM calls systems driven
product development (SDPD), resulting in a
variety of benefits for both manufacturers
and consumers. At the very least, according
to Siemens PLM, ALM users no longer have
to switch to PLM to search, view, and modify
data residing in Teamcenter PLM, or vice
versa.

Similarities Differences

Both systems are built around process
and core disciplines

ALM is centered on software “files” and prescribes a process to
create software applications. These applications consist of multiple
item types and complex relationships between these item types,
which in turn create impact trees. PLM is oriented around “parts”
which form a tree structure of part-of relationships.

Both systems incorporate workflow,
variant management, test management,
requirements, and specification
management

ALM deals in the abstract. PLM deals in the concrete. In ALM,
software engineers envision, elicit, define, implement, test, and
maintain abstract functions. PLM’s scope is to deliver a bill of
materials to the production chain. The function of the components
in PLM is the component itself.

Both systems allow linking components
to each other

In PLM there is a “part-of” link type creating decomposition
hierarchies. In ALM there are many different link types creating
dependency hierarchies.

Both systems allow linking information
to components

In PLM this information is pure mathematics: formulas, tolerances,
diagrams, etc. In ALM the information linked to items is
descriptive: textual, mock-ups, user stories, test scenarios, etc.

In both environments there is a wide
usage of models

In PLM models follow the part-of decomposition and define
product shapes. PLM models are usually divided into different
layers representing different product subsystems: electrical layout,
braking subsystem, transmission, interior, etc. In ALM a model
follows the functional decomposition by means of diagrams like
entity-relationship or object-oriented.

Reprinted from the November 2015 AUTOMOTIVE DESIGN & PRODUCTION Magazine and Copyright  ©  2015 by Gardner Business Media, Inc.,
6915 Valley Ave., Cincinnati, Ohio 45244-3029.

